[Main topics] [Navigation]

Drawing and illustrating in the pre-digital time

Note: I have found a nearly full copy of this page at http://www.cartage.org.lb/en/themes/Arts/drawings/DrawingMaterials/Drawingillustrating/Drawingillustrating.htm with a wrong reference to the source of the information.

Some of the tools described here are still in use – at least in education at school. However, most of the items have disappeared from a professional environment. Even the drawing board has disappeared. But we all are still dreaming of screens of that size!

Most french words courtesy by Daniel Blériot. [2001-12-15]

Indicating English indicate German indicate French
drawing tool, design tool das zeichenwerkzeug util à dessiner

Compass
drawing instruments
rod compass ???
bow compass
drop compass ???
dividing compass ???

der zirkel
das reisszeug
der stangenzirkel
der nullenzirkel
der fallnullenzirkel
der teilzirkel
le compas
la boîte à compas
le compas à verge

le compas à pompe
le balustre
Camera lucida die camera lucida le camera lucida, la chambre claire
Drawing board das zeichenbrett
die zeichenmaschine
la planche à dessin
la machine à dessiner
Drawing pen die reißfeder
die nachlauffeder
die doppel-reißfeder
le tire-ligne
le tire-ligne pour courbes
le tire-ligne pour double trait
Ellipse compass der ellipsenzirkel ???
French curve
spline
das kurvenlineal
die straklatte
le pistolet (à dessin)
???
Pantograph der pantograph, der storchenschnabel le pantographe
Proportional compass der reduktionszirkel (proportionalzirkel) le compas de réduction
Protractor der winkelmesser le rapporteur
Ruler
parallel ruler
das lineal
das parallel-lineal
la règle (de proportions)
la règle parallèle
Scale der maßstab l'échelle [fem.]
Slide rule
Calculation disk
der rechenschieber
die rechenscheibe
la règle à calcul
le disc à calcul
Square das zeichendreieck l' équerre [fem.]
Template
script template
die schablone
die schriftschablone
???
la trace-lettre
T-square die reißschiene la règle à dessin
Circle drawing tool der kreiszeichner ???
X2 der fluchtpunkt-zeichner ???

[To top/bottom of page] Drawing pen

Early drawing pens were made similar to forceps, with a screw to adjust the distance of the two legs which held the indian ink. I remember the time when the two legs even had to be smoothed with a honing stone to undo the waering from the very harsh paper. For my map drawing I also had a double pen (for streets) and a free wheeling pen for altitude curves (isohypses).

forceps shaped drawing pens

The pen at this drawing fountain pen could easily be exchanged for writing with types for narrow and wide lines.

  drawing fountain pen

This was my set of pens for a number of years...

my personal set of drawing pens

[To top/bottom of page] Drawing board

The most common drawing board for engineers and also for illustrators used a parallelograms to keep the rulers parallel to itself. The detail picture shows the 'head' of the machine: The rulers could be exchanged according to the desired scale; they could also be rotated in 15 degree steps or fixed at an arbitrary angle.

drawing board with parallelogram

protractor at drawing board

For wide drawing boards (especially used in the ship industy) the parallelogram mechanism was replaced by a horizontal rail on top with a 't-square' on roller barings holding the drawing head.

[To top/bottom of page] Square and T-square

Amateurs and students most time are confined to simple forms of a drawing board with a t-square to draw horizontal lines (the board was not square enough to allow for verticals also). Angles in steps of 15 degrees require 2 squares with 90-45-45 degrees and 90-60-30 degrees.

drawing board with squares and t-square

For the desktop A2 and A3 sized drawing tablets became available with a combination of t-square and protractor. I still have an A3 sized in use.

drawign tablet with protractor

[To top/bottom of page] Ruler

For working on the desk a ruler is still a handy tool. Most time it is combined with a 1:1 scale with tic marks at every mm. For typographic purpose also rulers with pica, points etc. are still in use.

Sketch of parallel ruler in useConvenient tools on the desk are parallel moving rulers. One type has (rubber coated) rollers to guide the movement. Another type connects two parallel half-rulers with two legs forming a parallelogram with the ruler.The type with the rollers often is combined with a mechanism to slip the ruler step be step for hatsching.

A more elaborate example is pictured hereafter. This is a multipurpose tool especially for students... Even math formulas and trigonometric tables are available. With the various holes on the long edge a compass can be simulated.

[To top/bottom of page] Scale

Since various drawing scales were needed, the tool combined 6 scales, for example, 1:200, 1:50 etc. Also very strange scales for rural maps could be found: 1:1440 and 1:2880 (at least in Austria).

scale with various markings

[To top/bottom of page] Template

Not only children like templates. Making illustrations on paper very often is faster than any computer based method... A standard catalogue for templates as of 1997 lists hexagons, ellipses, electrical and chemical signs etc. But writing with templates is definetely out of business.

templates for ellipses and other shapes

writing template in use

For drawings such as the following I created templates of my own using a 0.5mm plastic foil:

a row of similar cams drawn with hand-made template

[To top/bottom of page] French curves

A common set of curves is the Burmester set displayed here. The first item is very handy for ellipses, the second very often fitts large parts of hyperbolas and the third (largest) item is used most for parabolas.

french curves - Burmester set Use of french curves

During my time as a mechanical engineer I also used a very special courving tool: some sort of plastic snake with lead spine, about 40 cm long. This could be bent to the desired shape.

In ship building where drawings frequently were to the scale (or at least as large as rooms), another form of curving tools were in use: in German it was called straklatte. This is a long straight slat of wood or other bendable material. It was pinned down along few points shaping the curve.

[To top/bottom of page] Compasses

Various types of compasses and drawing pens were combined in a box of drawing instruments. The compass in this set could draw circles up to 25 cm in diameter by means of an elongation rod. To draw very small circles a drop compass and a bowcompass is included, sometimes also a dividing compass with two pins.

My father's set of drawing instruments in case (about 1935)

For larger circles the needle and pencil are arranged on sliders on a rod, which might also be eleongated. I remember that once we needed a radius of 4m. Kneeling on the floor we just used an ordinary wooden rod of that length.

rod compasses for large circles

[To top/bottom of page] Proportional compasses

Proportional compasses are used to divide distances or to 'convert' them according to a scale. A specialized device for the relation of the golden rectangle may be still in use by sculpturers and other artists. The rightmost image depicts an instrument to divide a distance into up to 10 equal parts.

pin compass with adjustable slider for arbitrary proportinal divisions wooden instrument in the form of a 3 legged compass to divide a distance according to the golden section metal instrument with 11 legs to divide a distance into at most ten equal parts

[To top/bottom of page] Drawing large circles

But how to draw circles, if the center can not be reached? I have only a scetch of such an instrument. There were other types available with greater accuracy, but more elaborate.

sketch of device to draw circles without reaching the centre

b = r - sqrt(r2 - a2) For a given radius angle alpha is constant. Because a is an instrument constant, there were tables to get b from the desired radius.

[To top/bottom of page] Ellipse compasses

Before you just could drag your mouse to get an ellipsis of any size both templates and special mechanical devices were used. The two devices depicted use different methods of drawing an ellipse.

ellipse compass made of translucent plactic principle of ellipse compass with crossed grooves and level with two nuts gliding in the slots

The method using a thread is at least still used by gardeners. Using a sharp pencil, thin pins and a thin thread you can get quite a good precision by this method first described at least by Descartes (1596 - 1650):

Based on the desired long and short axes you can construct the positions of the focal points where the pins are inserted
f = sqrt (a2 - b2)

The length of the thread is
2(a+ f)

[To top/bottom of page] Pantograph

For enlarging and reducing drawings this tool was at least in use by amateurs. Heavy duty models are still in use for engraving and contour milling.

pantograph looking like parallelographs

Another form of this tool was called Storchenschnabel in German.

pantograph in the shape of a storks fill

[To top/bottom of page] Perspective illustrations

To draw correctly with perspective using vanishing points wide drawing boards with special rods were used. Let's see, maybe I find a photograph from such a device.

Skilled users could combine photographs with drawn illustrations - a task nearly everybody can perform now with graphic software.

[To top/bottom of page] Camera lucida

principle of camera lucida

You might know the camera obscura, which works only for very luminous situations. Camera lucida (light chamber) was developed by W. H. Wollaston in 1807 to draw landscapes etc. with ease. See also about.com.

The main component is a 4-sided glass prism. From the oject G the light is seen by the eye A in Z, where the pencil can be used to draw the object.

When the instrument is built with mirrors rather than a prism it is called mirror lucida.

The following is a 'folded away' instrument from the 18th century in the catalogue of gemmary.com.

18th century mirror lucida in case

Modern versions of a camera lucida can be purchased (for example) from: camera-obsura-lucida.shop.com (with videos explaning the use) or cameralucida.org.uk.

Some microscope manufacturers also provide "camera lucida mirrors" or "camera lucida prisms" for drawing (rather than photographing) the seen image. For example, Cosmo Laboratory Equipment, Kay Kay Global Suppliers or Kshitij Innovation.

[To top/bottom of page] Protractor

Various forms are still in use at school. The most used one provides 180°. I still have one with 400g for the full circle (and I also have trigonometric tables for these 'neugrad' or 'new gradation' which allows more easy mathematical handling of arcs).

For military use 'artillery' versions with 6400 units for the full circle were available (at least in Switzerland).

Full and halve circle protractors made of translucent platic

[To top/bottom of page] Slide rule

This is not a drawing tool per se, but was used by educated people for calculations. The analogue calculator is based on the logarithms, discovered (or developed) by Leibnitz, Newton and Napir 1). This principle reduces multiplication and division to addition and substraction. Potenzation and roots are reduced to multiplication and division. But also special scales for trigonometric calculations etc. were in use. The typical slide rule of an engineer had 25 scales and was 25cm long. this allowed an accuracy of 3 - 4 digits.

slide rule with basic scales

The sliding window shows the square of 4 (scale D) to be 16 (scale A). The tong shows the multiplication of 1.26 by 3.17 (C) = 4 (D).

circular slide rule (calculation disc)

'Winding up' the scales on circles allows a high precision even with a small device.

Specialised versions of calculation disks are still in use, for example, to calculate settings of machines.

[To top/bottom of page] Sources

Bachmann-Forberg: Technisches Zeichnen; B.G. Teubner; Leipzig 19954 Indicating German

A. Gruber: Zeichen- Mal- und Messgeräte, Otto Maier; Ravensburg ca 1940 Indicating German

Denis Diderot: Encyclopédie, ou Dictionnaire des sciences, des arts et des métiers; Paris, 1762 - 1777 (I have only a facsimile of the image tables).

Katalog 894 (August 1994) Racher & Co AG, Zürich.

[To top/bottom of page] Further links

Camera Lucida, Obscura etc.
Origin of Shadows by Ross Woodrow, University of Newcastle, Australia.
Compass, Protractor
Wolfram Research
Indicating German Spezialisierung und Generalisierung in der Entwicklung der Zirkel (wenn nicht mehr dort: hier).
Drawing tools
Ecobra GmbH, Nürnberg, Deutschland
Tecnomarket (Italy): Disegno tecnico

[To top/bottom of page] Notes

1) Of course, the Swiss claim Jost Bürgi to be the discoverer / developer of logarithms...

[Main topics] [Navigation]
 URL:  Created: 1997-11-06  Updated:
© Docu+Design Daube, Zürich    
  Business of Docu + Design Daube Sharing information Documentation issues Klaus Daube's personal opinions Guests on this site Home of Docu + Design Daube To main page in this category To bottom of page To top of page Search this site Site map Mail to webmaster To bottom of page To top of page