Adobe
FrameMaker 6.0

MIF Reference Online Manual F\\
Adobe

Notes
This document was designed to be distributed electronically and then printed on a laser printer on an as-needed basis. For this reason, the fonts and layout of this document have been chosen for optimal printing rather than for optimal viewing on-screen. To review this document on-screen, however, simply increase the magnification using the magnification box at the bottom of the window. For the best results when viewing dialog boxes on-screen, increase the magnification to 200%.

Adobe, the Adobe logo, Acrobat, Acrobat Reader, Adobe Type Manager, ATM, Display PostScript, Distiller, Exchange, Frame,
FrameMaker, FrameViewer, InstantView, and PostScript are trademarks of Adobe Systems Incorporated. Apple, PowerBook,
QuickTime, Mac, Macintosh and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and
other countries. HP-UX is a registered trademark of Hewlett-Packard Company. Microsoft, MS-DOS, Windows, and Windows NT
are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.. Sun and
Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Unix is a regis-
tered trademark and X Window System is a trademark of The Open Group. All other trademarks are property of their respective owners.

© 2000 Adobe Systems Incorporated. All rights reserved.

Contents

Introduction

Using MIF Statements

MIF Document
Statements

Why use MIF? o 6
Usingthismanual o i 6
Style CONVENLIONS ..o 7
Overview of MIF statements i, 7
MIF statement syntax ...t 10
Working with MIFfiles 15
Creating a simple MIF file for FrameMaker — 18
Creating and applying character formats — 29
Creating and formatting tables 30
Specifying page layout ... 40
Creating markersiiiii i 45
Creating Cross-references, 46
Creating variables 48
Creating conditional text 50
Including template files 54
Setting View Only document options ..., 56
Applications of MIF o 59
Debugging MIFfiles 62
Other application tools 63
Wheretogofromhere 63
MIFfile layout 64
MIFFile statement 66
Control statements ... 66
Macro statements ... 68
Conditional text o 70
Paragraph formats ... 71
Character formats i 77
TableS 83
COlOr 94
Variables . 96

Cross-referenCeS ... ov i 97

MIF Book File Statements

MIF Statements for
Structured Documents
and Books

MIF Equation Statements

MIF Asian Text
Processing Statements

Examples

Global document properties 98
PagES 117
Graphic objects and graphic frames —l 119
Textflows .o 139
Text insets (text imported by reference) 148
Publishers ... 156
MIF book file overview 158
MIF book file identification line l 159
Book statements 159
Structural element definitions — 167
Attribute definitions ... 170
Formatrules ... 172
Formatchange lists i 179
Elements ... 186
Preference settings for structured documents — 189
Text in structured documents ... 192
Structured book statements ... 192
MIF MBSSagES .. ot 196
Document statement 198
Math statement ... 203
MathFullForm statement ... i 204
Asian Character Encoding ...t 226
Combined FONtS o 227
Kumihan Tables 231
RUDItEXE . 242
Textexample ... 246
Barchartexample 248
Piechartexample 252
Customdashed lines 253
Table examples 255

Database publishing ... 259

MIF Messages

MIF Compatibility

Facet Formats for
Graphics

EPSI Facet Format

Framelmage Facet
Format

FrameVector Facet
Format

General form for MIF messages ooovvviiiiiiiieiiannn, 268
List Of MIF MESSAGES .ottt et e 268
Changes between version 5.5and 6.0 272
Changes between version5and 5.5 273
Changes between versions4and5 i 275
Changes between versions3and 4coiiiiiiiaa.. 279
Facets for imported graphics ... i 283
Basic facetformat 284
Graphic insets (UNIX VEISIONS)o.vvie e 286
General rules for reading and writing facets —....................... 292
Specification of an EPSI facet 294
Example of an EPSI facet 294
Specification of a Framelmage facet 296
Specification of Framelmage data ol 296
Differences between monochrome and color —....................... 299
Sample unencoded Framelmage facet 301
Sample encoded Framelmage facetl 302
Specification of a FrameVector facet 304
Specification of FrameVectordata 304

Sample FrameVector facet 323

Introduction

MIF (Maker Interchange Format) is a group of ASCII statements that create an easily parsed, readable text
file of all the text, graphics, formatting, and layout constructs that most FrameMaker® products (with the
exception of FrameReader®) understand. Because MIF is an alternative representation of a FrameMaker
document, it allows FrameMaker products and other applications to exchange information while
preserving graphics, document content, and format.

Why use MIF?

You can use MIF files to allow FrameMaker products and other applications to exchange information. For
example, you can write programs to convert graphics and text into MIF and then import the MIF file into
a FrameMaker product with the graphics and text intact. You can also save a FrameMaker document or
book file as a MIF file and then write a program to convert the MIF file to another format. These conversion
programs are called filters; filters allow you to convert FrameMaker document files into foreign files (files
in another word processing or desktop publishing format), and foreign files into FrameMaker document
files.

You can use MIF files with database publishing applications, which allow you to capture changing data
from databases and format the data into high-quality documents containing both text and graphics infor-
mation. You use the database to enter, manipulate, sort, and select data. You use a FrameMaker product to
format the resulting data. You use MIF files as the data interchange format between the database and the
FrameMaker product.

You can also use MIF files to do the following:

= Share documents with earlier versions of FrameMaker products
= Perform custom document processing

- Set options for online documents in View Only format

These tasks are described in “Applications of MIF” on page 59. You can use other FrameMaker products to
perform some of these tasks. See “Other application tools” on page 63.

Using this manual

This manual:

= Describes the layout of MIF files.

= Provides a complete description of each MIF statement and its syntax.
= Provides examples of how to use MIF statements.

« Includes MIF statements for version 5.5 of the following FrameMaker products: FrameMaker®,
FrameViewer®, FrameMaker+SGML".

ADOBE FRAMEMAKER 6.0
Introduction

Your FrameMaker product may not include all of the features described in this manual. For example, some
statements appear in all MIF files but are only applicable for structured documents created with
FrameMaker+SGML. Contact your FrameMaker local customer service representative for information
about other FrameMaker products.

To get the most from this manual you should be familiar with your FrameMaker product. For information
about a FrameMaker product and its features, see the documentation for your product. In addition, if you
are using MIF as an interchange format between a FrameMaker product and another application, you
should be familiar with the tools needed to create and manipulate the other application, such as a
programming language or database query language.

This chapter provides basic information about working with MIF files, including opening and saving MIF
files in your FrameMaker product. It goes on to provide detailed information about the MIF language and
its syntax.

For an introduction to writing MIF files, read “Using MIF Statements” on page 15. You can then use the
statement index, subject index, and table of contents to locate more specific information about a particular
MIF statement.

For a description of a MIF statement, use the table of contents or statement index to locate the statement.

For a description of the differences between the MIF statements for this version of your FrameMaker
product and earlier versions, see “MIF Compatibility” on page 272.

Style conventions

This manual uses different fonts to represent different types of information.

= What you type is shown in

text like this.

- MIF statement names, pathnames, and filenames are also shown in
text like this.

= Placeholders (such as MIF data) are shown in

text like this.

- For example, the statement description for Pgf Tag is shown as;
<Pgf Tag tagstring>

= You replacet agst ri ng with the tag of a paragraph format.

This manual also uses the term FrameMaker, (as in FrameMaker product, FrameMaker document, or

FrameMaker session) to refer to any of the FrameMaker, FrameMaker+SGML, and FrameViewer products.

Overview of MIF statements

When you are learning about MIF statements, you may find it useful to understand how FrameMaker
products represent documents.

7

ADOBE FRAMEMAKER 6.0 |8
Introduction

How MIF statements represent documents

FrameMaker products represent document components as objects. Different types of objects represent
different components in a FrameMaker document. For example, a paragraph is considered an object; a
paragraph format is considered a formatting object. The graphic objects that you create by using the Tools
palette are yet another type of object.

Each object has properties that represent its characteristics. For example, a paragraph has properties that
represent its left indent, the space above it, and its default font. A rectangle has properties that represent its
width, height, and position on the page.

When a FrameMaker product creates a MIF file, it writes an ASCII statement for each object in the
document or book. The statement includes substatements for the object’s properties.

For example, suppose adocument (with no text frame) contains a rectangle thatis 2 inches wide and 1 inch
high. The rectangle is located 3 inches from the left side of the page and 1.5 inches from the top. MIF repre-
sents this rectangle with the following statement:

<Rect angl e # Type of graphic object
Position and size: left offset, top offset,
wi dth, and hei ght
<ShapeRect 3.0" 1.5" 2.0" 1.0">

>

A FrameMaker product also treats each document as an object and stores document preferences as
properties of the document. For example, a document’s page size and page numbering style are document
properties.

FrameMaker documents have default objects

A FrameMaker document always has a certain set of default objects, formats, and preferences, even when
you create a new document. When you create a MIF file, you usually provide the objects and properties
that your document needs. However, if you don’t provide all the objects and properties required in a
FrameMaker document, the MIF interpreter fills in a set of default objects and document formats.

The MIF interpreter normally provides the following default objects:
- Predefined paragraph formats for body text, headers, and table cells
- Predefined character formats

= Aright master page for single-sided documents and left and right master pages for double-sided
documents

- A reference page

« Predefined table formats

« Predefined cross-reference formats

« Default pen and fill values and dash patterns for graphics
- Default colors

« Default document preferences, such as ruler settings

ADOBE FRAMEMAKER 6.0
Introduction

« Default condition tags

Although you can rely on the MIF interpreter to provide defaults, the exact properties and objects provided
may vary depending on your FrameMaker product’s configuration. The MIF interpreter uses default
objects and properties that are specified in setup files and in templates. In UNIX® versions, these templates
are ASC! | Tenpl at e and NewTenpl at e. You can modify these default objects and document formats by
creating your own version of ASCI | Tenpl at e or NewTenpl at e or by modifying your setup files.

For more information about modifying the default templates and setup files, see the online manual
Customizing FrameMaker Products for UNIX versions of FrameMaker products. For the Macintosh and
Windows® versions, see the chapter on templates in your user manual.

Current state and inheritance

A FrameMaker product has a MIF interpreter that reads and parses MIF files. When you open or import a
MIF file, the interpreter reads the MIF statements and creates a FrameMaker document that contains the
objects described in the MIF file.

When the interpreter reads a MIF file, it keeps track of the current state of certain objects. If the interpreter
reads an object with properties that are not fully specified, it applies the current state to that object. When
an object acquires the current state, it inherits the properties stored in that state.

For example, if the line width is set to 1 point for a graphic object, the interpreter continues to use a 1-point
line width for graphic objects until a new value is specified in the MIF file. Similarly, if the MIF file specifies
a format for a paragraph, the interpreter uses the same format until a new format is specified in the file.

The MIF interpreter keeps track of the following document objects and properties:
- Units

- Condition tag properties

- Paragraph format properties

= Character format properties

- Page properties

= Graphic frame properties

- Text frame properties

- Fill pattern

- Pen pattern

- Line width

- Line cap

- Line style (dash or solid)

- Color

- Text line alignment and character format

Because the interpreter also provides default objects for a document, the current state of an object may be
determined by a default object. For example, if a document does not provide any paragraph formats, the

9

ADOBE FRAMEMAKER 6.0
Introduction

interpreter applies a set of default paragraph properties to the first paragraph. Subsequent paragraphs use
the same properties unless otherwise specified.

How a FrameMaker product identifies MIF files

A MIF file must be identified by aM FFi | e or Book statement at the beginning of the file; otherwise a
FrameMaker product simply reads the file as a text file. All other statements are optional; that is, a valid
MIF file can contain only the M FFi | e statement. Other document objects can be added as needed; a
FrameMaker product provides a set of default objects if a MIF file does not supply them.

MIF statement syntax
The statement descriptions in this manual use the following conventions to describe syntax:

<t oken data>

t oken data where t oken represents one of the MIF statement names (such as Pgf) listed in the MIF
statement descriptions later in this manual, and dat a represents one or more numbers, a string, a token,
or nested statements. Markup statements are always delimited by angle brackets (<>); macro statements
are not. For the syntax of macro statements, see “Macro statements” on page 68.

A token is an indivisible group of characters that identify a reserved word in a MIF statement. Tokens in
MIF are case-sensitive. A token cannot contain white space characters, such as spaces, tabs, or newlines.
For example, the following MIF statement is invalid because the token contains white space characters: <Un
its U n>

When the MIF interpreter finds white space characters that aren’t part of the text of the document (as in
the example MIF statement, < Units Uin >),itinterprets the white space as token delimiters. When
parsing the example statement, the MIF interpreter ignores the white space characters between the left
angle bracket (<) and the first character of the token, Uni t s. After reading the token, the MIF interpreter
checks its validity. If the token is valid, the interpreter reads and parses the data portion of the statement.
If the token is not valid, the interpreter ignores all text up to the corresponding right angle bracket (>),
including any nested substatements. The interpreter then scans the file for the next left angle bracket that
marks the beginning of the next MIF statement.

All statements, as well as all data portions of a statement, are optional. If you do not provide a data portion,
the MIF interpreter assigns a default value to the statement.

Statement hierarchy
Some MIF statements can contain other statements. The contained statements are called substatements. In
this manual, substatements are usually shown indented within the containing statements as follows:
<Docunent

<DSt art Page 1>
>
The indentation is not required in a MIF file, although it may make the file easier for you to read.

A MIF main statement appears at the top level of a file. A main statement cannot be nested within other
statements. Some substatements can only appear within certain main statements.

10

ADOBE FRAMEMAKER 6.0
Introduction

The statement descriptions in this manual indicate the valid locations for a substatement by including itin
all of the valid main statements. Main statements are identified in the statement description; for the correct
order of main statements, see “MIF file layout” on page 64.

MIF data items

There are several general types of data items in a MIF statement. This manual uses the following terms and
symbols to identify data items.

This term or symbol

Means

string Left quotation mark (*), zero or more standard ASCII characters, and a straight quo-
tation mark (*). Example: " ab cdef ghij' .Toinclude extended ASCIl characters
in a string, you must use a backslash sequence (see “Character set in strings” on
page 13).

tagstring A string that names a format tag, such as a paragraph format tag. At agstri ng
value must be unique; case is significant. A statement that refersto atagstring
must exactly match the t agst ri ng value. At agst ri ng value can include any char-
acter from the FrameMaker character set.

pat hnarme A string specifying a pathname (see “Device-independent pathnames” on page 13).

bool ean A value of either Yes or No. Case is significant.

i nteger Integer whose range depends on the associated statement name.

I D Integer that specifies a unique ID. An ID can be any positive integer between 1 and
65535, inclusive. A statement that refers to an ID must exactly match the ID.

di mensi on Decimal number signifying a dimension. You can specify the units, suchas 1. 11",
72 pt,and 8.3 cm If no units are specified, the default unit is used (see “Units
statement” on page 66).

degrees A decimal number signifying an angle value in degrees. You cannot specify units;

any number is interpreted as a degree value.

per cent age

A decimal number signifying a percentage value. You cannot specify units; any num-
ber is interpreted as a percentage value.

netric A dimension specified in units that represent points, where one point is 1/72 inch
(see “Math values™ on page 12). Only used in Mat hFul | For mstatements.

W H Pair of dimensions representing width and height. You can specify the units.

XY Coordinates of a point. Coordinates originate at the upper-left corner of the page
or graphic frame. You can specify the units.

LTRB Coordinates representing left, top, right, and bottom indents. You can specify the
units.

L TWH Coordinates representing the left and top indents plus the dimensions representing

the width and height of an object. You can specify the units.

11

ADOBE FRAMEMAKER 6.0
Introduction

This term or symbol Means

XY WH Coordinates of a point on the physical screen represented by X and Y plus dimen-
sions describing the width and height. Used only by the DW ndowRect and DVi e-
wRect statements within the Docunent statement and the BW ndowRect state-
ment within the Book statement. The values are in pixels; you cannot specify the
units.

keywor d A token value. The allowed token values are listed for each statement; you can pro-
vide only one value.

<t oken..> Ellipsis points in a statement indicate required substatements or arguments. The
entire expanded statement occurs at this point.

Unit values

You can specify the unit of measurement for most dimension data items. The following table lists the units
of measurement that a FrameMaker product supports and their notation in MIF.

Measurement unit Notation in MIF Relationship to other units
point pt or poi nt 1/72 inch

inch "orin 72 points

millimeter mmorm | |i meter 1linchis 25.4 mm
centimeter cmor centineter linchis 2.54 cm

pica pc or pica 12 points

didot dd or didot 0.01483 inches

cicero cc or cicero 12 didots

Dimension data types can mix different units of measurement. For example, the statement
<Cel | Margi ns L T R B> can be written as either of the following:

<Cel |l Margins 6 pt 18 pt 6 pt 24 pt>
<Cel | Margins 6 pt .25" .5 pica 2 pica>

Math values

The Mat hFul | For mstatement uses met r i ¢ values in formatting codes. A met ri ¢ unit represents one point
(1/72inch). The met ri ¢ type is a 32-bit fixed-point number. The 16 most significant bits of amet ri ¢ value
represent the digits before the decimal; the 16 least significant bits represent the digits after the decimal.
Therefore, 1 point is expressed as hexadecimal 0x 10000 or decimal 65536. The following table shows how
to convert met ri ¢ values into equivalent measurement units.

To get this unit Divide the metric value by this number

point 65536

inch 4718592

12

ADOBE FRAMEMAKER 6.0
Introduction

To get this unit Divide the metric value by this number
millimeter 185771

centimeter 1857713

pica 786432

didot 6997

cicero 839724

Character set in strings

MIF string data uses the FrameMaker character set (see the Quick Reference for your FrameMaker
product). MIF strings must begin with a left quotation mark (ASCII character code 0x60) and end with a
straight quotation mark (ASCII character code 0x27). Within a string, you can include any character in
the FrameMaker character set. However, because a MIF file can contain only standard ASCII characters
and because of MIF parsing requirements, you must represent certain characters with backslash (\)
sequences.

Character Representation
Tab \t
> \ >
. \q
\Q
\ \\
nonstandard ASCII \xnn

All FrameMaker characters with values above the standard ASCII range (greater than \ x7f) are repre-
sented in a string by using\ xnn notation, where nn represents the hexadecimal code for the character. The
hexadecimal digits must be followed by a space.

The following example shows a FrameMaker document line and its representation in a MIF string.

In a FrameMaker document In MIF

Some ‘symbols': >\@;! “Sone \ Qsynbol s\ gq: \>\\\xaf \xcO !’

You can also use the Char statement to include certain predefined special characters in a Par aLi ne
statement (see “Char statement” on page 143).

Device-independent pathnames

Several MIF statements require pathnames as values. You should supply a device-independent pathname
so that files can easily be transported across different system types. Because of MIF parsing requirements,
you must use the following syntax to supply a pathname:

13

ADOBE FRAMEMAKER 6.0
Introduction

" <code\ >nanme<code\ >nanme<code\ >nane...

where name is the name of a component in the file’s path and code identifies the role of the component in
the path. The following table lists codes and their meanings.

Code Meaning

r Root of UNIX file tree (UNIX only)

\Y Volume or drive (Macintosh and Windows)
h Host (Apollo only)

c Component

u Up one level in the file tree

When you specify a device-independent pathname in a MIF string, you must precede any right angle
brackets (>) with backslashes (\), as shown in the syntax above.

Absolute pathnames

An absolute pathname shows the location of a file beginning with the root directory, volume, or drive. The

following table specifies device-independent, absolute pathnames for the different versions of FrameMaker
products.

In this version The pathname appears as this MIF string

UNIX “<r\><c\>M/Direct ory<c\ >MySubdi r ect or y<c\ >Fi | enang’
Macintosh " <v\ >MyVol une<c\ >MyFol der <c\ >My Subf ol der <c\ >Fi | enane'
Windows " <v\ >c: <c\ >nydi r<c\ >subdi r<c\ >fi | enane’

Relative pathnames

A relative pathname shows the location of a file relative to the current directory. In all FrameMaker product
versions, the device-independent, relative pathname for the same file is:

" <c\>Fi | enane’

14

Using MIF Statements

MIF statements can completely describe any FrameMaker document, no matter how complex. As a result,
you often need many MIF statements to describe a document. To learn how to use MIF statements, it helps
to begin with some simple examples.

This chapter introduces you to MIF, beginning with a simple MIF example file with only a few lines of text.
Additional examples show how to add common document objects, such as paragraph formats, a table, and
a custom page layout, to this simple MIF file.

The examples in this chapter are also provided in online sample files. You can open these examples in a
FrameMaker product and experiment with them by adding additional MIF statements. Look for the
sample files in the following location:

In this version Look here

UNIX $FMHOME/ f mi ni t/ | anguage/ Sanpl es/ M F, where | anguage is the language in
use, such asusengl i sh

Macintosh The M F folder in the Sanpl es folder

Windows The M F directory under the sanpl es directory

Working with MIF files

A MIF file is an alternate representation of a FrameMaker document in ASCII format. MIF files are usually
generated by a FrameMaker product or by an application that writes out MIF statements. You can,
however, create MIF files by using a text editor or by using a FrameMaker product as a text editor. This
section provides some general information about working with MIF files regardless of the method you use
to create them.

Opening and saving MIF files

When you save a FrameMaker document, you usually save it in Normal format, FrameMaker’s binary
format for document files. To save a document as a MIF file, choose Save As from the File menu. In the
Save Document dialog box, choose Interchange (MIF) from the Format pop-up menu. You should give the
saved file the suffix . mi f to distinguish it from a file saved in binary format.

When you open or import a MIF file, a FrameMaker product reads the file directly, translating it into a
FrameMaker document or book. When you save the document in Normal format, a FrameMaker product
creates a binary document file. To prevent overwriting the original MIF file, remove the . ni f file suffix
and replace it with a different suffix (or no suffix).

15

ADOBE FRAMEMAKER 6.0 |16
Using MIF Statements

If you use a FrameMaker product to edit a MIF file, you must prevent it from interpreting MIF statements
when you open the file by holding down a modifier key and clicking Open in the Open dialog box.

In this version Use this modifier key
UNIX Shift

Macintosh Option

Windows Control or Shift

Save the edited MIF file as a text file by using the Save As command and choosing Text Only from the
Format pop-up menu. Give the saved file the suffix . mi f . When you save a document as Text Only, a
FrameMaker product asks you where to place carriage returns. For a MIF file, choose the Only between
Paragraphs option.

In UNIX versions, a FrameMaker product saves a document in text format in the 1SO Latin-1 character
encoding. You can change the character encoding to ASCII by changing the value of an X resource. See the
description of character encoding in the online manual Customizing FrameMaker Products. In Macintosh
and Windows versions, press Esc F t ¢ to toggle between FrameMaker’s character encoding and ANSI for
Windows or ASCII for Macintosh.

Importing MIF files

You can use the File menu’s Import>File command to import MIF files into an existing document, but you
must make sure that the imported statements are valid at the location where you are importing them. A
MIF file can describe both text and graphics; make sure that you have selected either a place in the text flow
(if you are importing text or graphics) or an anchored frame (if you are importing graphics).

For example, to import a MIF file that describes a graphic, first create an anchored frame in a document,
select the frame, and then import the MIF file (see “Bar chart example” on page 248).

When you import or include MIF files, make sure that object IDs are unique in the final document and
that references to object IDs are correct (see “Generic object statements” on page 120).

Editing MIF files

You normally use a text editor to edit a MIF file. If you use a FrameMaker product to enter text into a MIF
file, be sure to open the MIF file as a text file and turn off Smart Quotes. If you leave Smart Quotes on, you
must use a key sequence to type the quotation marks that enclose a MIF string (" *). To enter a left
quotation mark, type Control-". To enter a straight quotation mark, type Control-'.

Although MIF statements are usually generated by a program, while you learn MIF or test and debug an
application that generates MIF, you may need to manually generate MIF statements. In either case, you can
minimize the number of MIF statements that your application needs to generate or that you need to type
in.

The following suggestions may be helpful when you are working with MIF statements:

- Edit a MIF file generated by a FrameMaker product.

ADOBE FRAMEMAKER 6.0 |17
Using MIF Statements

= You can edit a MIF file generated by a FrameMaker product or copy a group of statements from a MIF
file into your file and then edit the statements. An easy way to use a FrameMaker product to generate a MIF
file is to create an empty document by using the New command and then saving it as a MIF file.

- Test one object at a time.

= While testing an object in a document or learning about the MIF statements that describe an object, work
with just that object. For example, if you work with a document that contains both tables and anchored
frames, start by creating the MIF statements that describe tables. Then add the statements that describe

anchored frames.

= Use the default properties provided by a FrameMaker product.

- If you are not concerned with testing certain document components, let a FrameMaker product provide
a set of default document objects and formats.

MIF file layout
A FrameMaker product writes the objects in a MIF document file in the following order:

This section Contains these objects
File ID MIF file identification line (M FFi | e statement)
Units Default units (Uni t s statement)
Catalogs Color
Condition

Paragraph Format
Element

Font or Character Format
Ruling

Table Format

Views

Formats Variable

Cross-reference

Objects Document
Dictionary
Anchored frames
Tables
Pages

Text flows

ADOBE FRAMEMAKER 6.0 |18
Using MIF Statements

A FrameMaker product provides all of these objects, even if the object is empty. To avoid unpredictable
results in a document, you must follow this order when you create a MIF file.

Creating a simple MIF file for FrameMaker

Note: The rest of this chapter explains how to create some simple MIF files for FrameMaker and FrameViewer
by hand. These instructions do not apply to FrameMaker+SGML, which requires that you create elements first.

The most accurate source of information about MIF files is a MIF file generated by a FrameMaker product.
MIF files generated by a FrameMaker product can be very lengthy because a FrameMaker product repeats
information and provides default objects and formats for all documents. You may find it difficult to
determine the minimum number of statements that are necessary to define your document by looking at
a FrameMaker-generated MIF file.

To better understand how a FrameMaker product reads MIF files, study the following example. This MIF
file uses only four statements to describe a document that contains one line of text:

<M FFi l e 6. 00> # The only required statenment
<Para # Begin a paragraph
<Par alLi ne # Begin a line within the paragraph

<String "Hello World' ># The actual text of this docunent
> # end of Paraline #End of Parali ne statenent
> # end of Para #End of Para statenent

The M FFi | e statement is required in each MIF file. It identifies the FrameMaker product version and
must appear on the first line of the file. All other statements are optional; that is, a FrameMaker product
provides a set of default objects if you specify none.

Comments in a MIF file are preceded by a number sign (#). By convention, the substatements in a MIF
statement are indented to show their nesting level and to make the file easier to read. The MIF interpreter
ignores spaces at the beginning of a line.

This example is in the sample file hel | o. i f . To see how a FrameMaker product provides defaults for a
document, open this file in a FrameMaker product. Even though the MIF file does not specify any
formatting, a FrameMaker product provides a default Paragraph Catalog and Character Catalog. In
addition, it provides a right master page, as well as many other default properties.

Save this document as a MIF file and open the FrameMaker-generated MIF file in a text editor orin a
FrameMaker product as a text file. (For information on how to save and open MIF files, see “Opening and
saving MIF files” on page 15.)

You'll see that the MIF interpreter has taken the original 6-line file and generated over 1,000 lines of MIF
statements that describe all the default objects and their properties. To see the actual text of the document,
go to the end of the file.

This example demonstrates an important point about MIF files. Your MIF file can be very sparse; the MIF
interpreter supplies missing information. Most documents are not this simple, however, and require some
formatting. The following sections describe how to add additional document components, such as
paragraph and character formats, a table, and custom page layouts, to this minimal MIF file.

ADOBE FRAMEMAKER 6.0
Using MIF Statements

Creating and applying paragraph formats

In a FrameMaker document, paragraphs have formatting properties that specify the appearance of the
paragraph’s text. A paragraph format includes the font family and size, indents, tab stops, the space
between lines in a paragraph, and the space before and after a paragraph. In a FrameMaker document, the
end of a paragraph is denoted by a single carriage return. You control the amount of space above and below
the paragraph by modifying the paragraph’s format, not by adding extra carriage returns.

In a FrameMaker document, you store paragraph formats in a Paragraph Catalog and assign a tag (name)
to the format. You can then apply the same format to many paragraphs by assigning the format tag to the
paragraphs. You can also format a paragraph individually, without storing the format in the Paragraph

Catalog. Or, you can assign a format from the Paragraph Catalog and then override some of the properties
within a particular paragraph. Formats that are not stored in the Paragraph Catalog are called local formats.

Creating a paragraph
In a MIF file, paragraphs are defined by a Par a statement. A Par a statement contains one or more
Par aLi ne statements that contain the lines in a paragraph; the actual text of the line is enclosed in one or
more St ri ng statements:
<Par a # Begi n a paragraph

<Par alLi ne # Begin a line within the paragraph

<String "Hello World' ># The actual text of this docunent

> # End of ParalLine statenent

> # End of Para statenent

The Par a, Par aLi ne, and St ri ng statements are the only required statements to import text. You could
use this example to import a simple document into a FrameMaker product by placing each paragraph in a
Par a statement. Break the paragraph text into a series of St r i ng statements contained in one Par aLi ne
statement. It doesn’t matter how you break up text lines within a Par a statement; the MIF interpreter
automatically wraps lines when it reads the MIF file.

Some characters must be represented by backslash sequences in a MIF string. For more information, see
“Character set in strings” on page 13.

Creating a paragraph format
Within a FrameMaker document, you define a paragraph format by using the Paragraph Designer to

specify the paragraph’s properties. In a MIF file, you define a paragraph format by using the Pgf statement.

The Pgf statement contains a group of substatements that describe all of a paragraph’s properties. It has
the following syntax:
<Pgf

<property val ue>

<property val ue>

19

ADOBE FRAMEMAKER 6.0
Using MIF Statements

20

APgf statement is quite long, so learning how to relate its substatements to the paragraph’s properties may
take some practice. Usually a MIF statement name is similar to the name of the setting within a dialog box.
The following examples show the property dialog boxes from the Paragraph Designer with the related Pgf
substatements.

Suppose you have created a paragraph format for a numbered list item with Basic properties defined as
follows in the Paragraph Designer.

! |
—-| Paragraph Designer
graph Tag: Indents: Space: [T Tah Stops:
m:;;r:f | s Ahove Y
: o.0" oopt [7]| ||o2s L
Basic]
— Left: Belows 1
| apty ||| o5 oopt [[+]
To Selection Right: i
Update All | XE Line Spacing: Edit... |
;?Jr;_ﬁ;tfe:aggem Alighment; I1 4.0 pt El | Hext { Tag:
———| Left | | I Fixed] El
- Commands: |+| i
| |

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer

<Pgf Tag " Nunbered' >

Paragraph Tag

<Pgf Fl ndent 0.0"> First Indent
<Pgf LI ndent 0.25"> Left Indent
<Pgf Rl ndent 0.0"> Right Indent
<Pgf Al i gnment Left > Alignment
<Pgf SpBefore 0.0 pt> Space Above |
<Pgf SpAfter 0.0 pt> Space Below |

<Pgf Leading 2.0 pt>

Line Spacing (leading is added to font size)

<Pgf Li neSpaci ng Fi xed>

Line Spacing (fixed)

<Pgf NunTabs 1>

Number of tab stops

<TabSt op

Begin definition of tab

ADOBE FRAMEMAKER 6.0
Using MIF Statements

In MIF file In Paragraph Designer
<TSX 0. 25"> Tab position
<TSType Left > Tab type

<TSLeader Str '

Tab leader (none)

> # end of TabStop

<Pgf UseNext Tag No >

Turn off Next] Tag feature

<Pgf Next Tag "' >

Next 1 Tag name (none)

The Default Font properties are defined as follows in the Paragraph Designer.

|

Paragraph Designer

Paragraph Tag: | start: Keep With:
INumhered El |P|.nywhere = I I Nextq LI Previous {
Properties:
Pagination = | Formnat: Widow fOrphan Lines: |1_
I Apply | “* In Column

To Selection + Bun-In Head - - Default Punctuation: I—

Update All |

Formats Tagged:
Numbered

Commands: El

%+ 3Side Head--Alignment: First Baseline - |

+ Across All Columns
+ Across Al Columns and Side Heads
W A5 s

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer
<Pgf Font

<FFamly "Tines' > Family

<FSize 12.0 pt> Size

<FEncodi ng>

<FAngl e "Regul ar' > Angle

<FWei ght " Regul ar' > Weight
<FLanguage> Language

<FVar "~ Regul ar' > Variation

21

ADOBE FRAMEMAKER 6.0
Using MIF Statements

In MIF file In Paragraph Designer
<FCol or "Bl ack' > Color

<FDW 0.0 pt> Spread

<FStretch 100% Stretch

<FUnder | i ni ng NoUnderlining > Underline
<FOverline No > Overline

<FStrike No > Strikethrough
<FChangeBar No > Change Bar
<FPosition FNornmal > Superscript/Subscript

<FCase FAsTyped >

Capitalization

<FPai rKern Yes >

Pair Kern

<FTsume No>

Tsume (Asian systems only)

> # end of PgfFont

The Pagination properties are defined as follows in the Paragraph Designer.

|

Paragraph Designer

Update All |

Formats Tagged:
Humbered

— Commands: El

W A5 s

+» Across All Columns
+ Across All Columns and Side Heads

% Side Head--Alignment: Frst Baseline

Paragraph Tag: | start: Keep With:
INumhered El |P.nywhere I I Nextq LI Previous {
Properties:
Pagination = | Fommnat: WidowOrphan Lines: |1_
I Apply | % In Column

To Selection + Run-In Head- - Default Punctuation: I—

- |

The following table shows the corresponding MIF statements:

In MIF file

In Paragraph Designer

<Pgf Pl acenent Anywhere >

Start

<Pgf Wt hNext No >

Keep With Next

22

ADOBE FRAMEMAKER 6.0 |23
Using MIF Statements

In MIF file In Paragraph Designer

<Pgf Wt hPrev No > Keep With Previous 1

<Pgf Bl ockSi ze 1> Widow/Orphan Lines

<Pgf Pl acenent Styl e Normal > Format (paragraph placement)

<Pgf Runl nDef aul t Punct ~. '> Run-in Head Default Punctuation (a period followed by an em
space)

The Numbering properties are defined as follows in the Paragraph Designer.

= Paragraph Designer
Paragraph Tag:
W El [sutonumber Format:
Properties: <ozt

|Numhering = I Building Blocks: Character Format:

‘b . [Default { Font
st
I Apply a Default Font 5
To 3election P, Emphs_mis)
— a=1> EquationVariables
Update All | car
. <ot i(
Formats Tagged: ca=1>
Humbered <> Position:
T I Y PP Start of Paragraph !
4 Commands: El 4 rep | -
l]
The following table shows the corresponding MIF statements:
In MIF file In Paragraph Designer
<Pgf Aut oNum Yes > Turn on Autonumber
<Pgf NumFormat ~<n+\>.\\t' > Autonumber Format (a number followed by a period and a tab)
<Pgf Nunmber Font ' > Character Format (Default 9 Format)
<Pgf NumAt End No > Position (Start of Paragraph)

The Advanced properties are defined as follows in the Paragraph Designer.

|

Paragraph Designer

Apply |

To Selection

Update Al |

Formats Tagged:
Body

+ Commands: El

graph Tag: Automatic Hyphenation:
[Body El Max. # Adjacent: |2 Shortest Prefix: |3
Properties:) -
w Shortest Word: |5 Shortest Suffix: |3
—————————— ||I” Hyphenate

Word Spacing (% of Standard Space):

Minimum: |9|].|]% Optimum: |ll]l].l]%

Maximum: |110.0% Standard Space = 0.25 em
| Allow Automatic Letter Spacing

Frame Above §: Hone — | Below {: Hone -

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER 6.0
Using MIF Statements

In MIF file

In Paragraph Designer

<Pgf Hyphenate Yes >

Automatic Hyphenation (on)

<HyphenMaxLi nes

2> Max. # Adjacent

<HyphenM nWord 5> Shortest Word
<HyphenM nPrefix 3> Shortest Prefix
<HyphenM nSuf fix 3> Shortest Suffix
<Pgf M nWr dSpace 90> Minimum Word Spacing

<Pgf Opt Wr dSpace

100> Optimum Word Spacing

<Pgf MaxWor dSpace

110> Maximum Word Spacing

<Pgf Lett er Space Yes >

Allow Automatic Letter Spacing

<Pgf TopSepar at or

'> Frame Above

<Pgf Bot Separ at or

> Frame Below

24

ADOBE FRAMEMAKER 6.0
Using MIF Statements

The Table Cell properties are defined as follows in the Paragraph Designer.

= Paragraph Designer
Paragraph Tag:
[Humbered, | [+] | cen vertical Alignment: Top =1
Properties:

Tahle Cell =] Cell Margins:
I e Top: From Table Format, Plus: — | |I].I] pt
ply |

To Selection Bottom: From Table Format, Plus: — | [0.0 pt

Update All | Left: From Table Format, Plus: & | |I].l] pt

Formats Tagged:
Humbered Right: From Table Format, Plus: & | Il].l] pt

- Commands: El L

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer

<Pgf Cel | Ali gnment Top > Cell Vertical Alignment

<PgfCel | Margins 0.0 pt 0.0 pt 0.0 pt 0.0 pt> Cell Margins

<Pgf Cel | TMar gi nFi xed No > Top
<Pgf Cel | BMar gi nFi xed No > Bottom
<Pgf Cel | LMar gi nFi xed No > Left
<Pgf Cel | RVar gi nFi xed No > Right

Adding a Paragraph Catalog

In a MIF file, you define a Paragraph Catalog by using a Pgf Cat al og statement. The Paragraph Catalog
contains one or more paragraph formats, which are defined by Pgf statements. A Pgf Cat al og statement
looks like this:

<Pgf Cat al og
<Pgf ..> # A paragraph format description
<Pgf ..> # More paragraph formats

> # end of Pgf Catal og

The Pgf statement describes a complete paragraph format. For example, the sample file pgf cat . mi f
stores the paragraph format 1Heading in the Paragraph Catalog:

<M FFil e 6. 00> # Hand gener at ed

25

ADOBE FRAMEMAKER 6.0
Using MIF Statements

<Pgf Cat al og
<Pgf

<Pgf Tag " 1Headi ng' >
<Pgf UseNext Tag Yes >
<Pgf Next Tag " Body' >
<Pgf Al'i gnnent Left >
<Pgf Fl ndent 0.0">
<Pgf LI ndent 0.0">
<Pgf Rl ndent 0.0">

> # end of Pgf
> # end of Pgf Catal og

If you open pgf cat . nmi f ina FrameMaker product, you'll see that the Paragraph Catalog contains a single
paragraph format called 1Heading. If you supply a Paragraph Catalog, the paragraph formats in your
catalog replace those in the default catalog; they do not supplement the default formats.

If you do not supply a Paragraph Catalog in a MIF file, the MIF interpreter provides a default Paragraph
Catalog with predefined paragraph formats.

If a Pgf statement provides only the name of a paragraph format, the MIF interpreter supplies default
values for the rest of the paragraph properties when it reads in the MIF file.

Applying a paragraph format
To apply a format from the Paragraph Catalog to a paragraph, use the Pgf Tag statement to include the
format tag name within the Par a statement. For example, to apply the previously defined format
1Heading to a paragraph, use the following statements:
<Par a

<Pgf Tag " 1Headi ng' >

<Par aLi ne

<String "This line has the format called 1Headi ng.'>

> # end of Paraline
> # end of Para
To apply a format from the Paragraph Catalog and then locally override some properties, use a partial Pgf

statement within the Par a statement. The following MIF example applies the paragraph format 1Heading,
then changes the alignment:

<Par a
<Pgf Tag " 1Headi ng' >
<Pgf
<Pgf Al i gnnent Center>
> # end of Pgf

<Par aLi ne

26

ADOBE FRAMEMAKER 6.0 |27
Using MIF Statements

<String "This line is centered.'>
> # end of ParalLine
> # end of Para

To locally define a paragraph format, include a complete Pgf statement within the Par a statement:

<Par a
<Pgf

<Pgf Tag " 2Headi ng' >
<Pgf UseNext Tag Yes >
<Pgf Next Tag " Body' >
<Pgf Al'i gnnent Left >
<Pgf FI ndent 0.0">
<Pgf LI ndent 0.0">

> # end of Pgf
<Par aLi ne
<String "Alocally formatted heading' >
> # end of Paraline
> # end of Para

For a complete description of Pgf property statements, see page 72.

How paragraphs inherit properties

Paragraphs can inherit properties from other paragraphs in a MIF file. If a Pgf statement does not provide
values for each paragraph property, it acquires any property values explicitly defined in a previous Pgf
statement. Because the MIF interpreter sequentially reads MIF files, it uses the most recently defined Pgf
statement that occurs before the current statement in the file.

For example, the following MIF code applies the default format named Body to the first paragraph in a
document and locally overrides the paragraph font:
<Par a
<Pgf
<Pgf Tag " Body' >
<Pgf Font
<FWei ght " Bol d' >
> # end of Pgf Font
> # end of Pgf
<Par alLi ne
<String "First paragraph in docunent.'>
> # end of Paraline
> # end of Para

<Par a

ADOBE FRAMEMAKER 6.0
Using MIF Statements

<Par aLi ne
<String " Second paragraph in docunent.'>
> # end of Paraline
> # end of Para

The previous example is in the sample file pgf f nt . mi . If you open this file in a FrameMaker product,
you'll find that the second paragraph also has the new font property.

A paragraph property remains in effect until the property value is changed by a subsequent MIF statement.
To change a paragraph property to another state, supply a Pgf statement containing the paragraph
property statement set to the new state.

Thus, in the previous example, you could change the font from Bold to Regular in a Pgf statement in the
second Par a statement:

<Par a
<Pgf
<Pgf Font
<FWei ght “Regul ar' >
> # end of PgfFont
> # end of Pgf
<Par aLi ne

<String " Second paragraph in docunent.'>
> # end of Paraline
> # end of Para

To summarize, paragraphs inherit formats as follows:

- Formats in the Paragraph Catalog inherit properties from the formats above them.
- Locally defined paragraph formats inherit properties from previously specified formats.

- Text lines in anchored frames inherit font properties from previously specified formats, including the last
format in the Paragraph Catalog and previous text lines.

Tips
The following hints may help you minimize the MIF statements for paragraph formats:

- If possible, use the formats in the default Paragraph Catalog (don’t supply a Pgf Cat al og statement).
If you know the names of the default paragraph formats, you can tag paragraphs with the Pgf Tag
statement.

- If you know that a document will use a particular template when it is imported into a FrameMaker
document, you can just tag the paragraphs in the text flow. Don’t create a new Paragraph Catalog in MIF;
it's easier to create catalogs in FrameMaker document templates.

- If you need to provide a full Paragraph Catalog in a MIF file, you can still use a FrameMaker product to
ease the task of creating a catalog. Create a template in a FrameMaker product, save the template as a MIF
file, and include the Paragraph Catalog in your document. For instructions, see “Including template files”
on page 54.

28

ADOBE FRAMEMAKER 6.0 |29
Using MIF Statements

Creating and applying character formats

You can define character formats locally or store them in the Character Catalog and apply the formats to

text selections. Creating and applying character formats is very similar to creating and applying paragraph
formats as described in the previous section. Because the two methods are similar, this section just summa-
rizes how to create and apply character formats.

In a MIF file, the Character Catalog is contained in a Font Cat al og statement. The Font Cat al og
statement contains named character formats in a list of Font statements. A Font Cat al og statement looks
like this:

<Font Cat al og

<Font...> # Describes a character fornmat
<Font...> # Describes a character fornat
> # end of Font Cat al og

A Font statement specifies the properties of a character format; these are the same properties specified in
the Character Designer. The Font statement is just like the Pgf Font statement that you use to define the
default font in a paragraph format. See “PgfFont and Font statements” on page 77 for a complete
description of a Font statement.

To apply a predefined character format to text, use the FTag statement:

<M FFi | e 6. 00> # Hand gener at ed
<Font Cat al og
<Font
<FTag " Enphasis' >
<FAngle “Italic'>
> # end of Font
> # end of Font Cat al og
<Par a
<Pgf Tag " Body' >
<Par aLi ne
<String “You can format characters w thin a paragraph by '>
<Font
<FTag " Enphasis'>
> # end of Font
<String "applying >
<Font
<FTag "'>
> # end of Font
<String ° a character format fromthe character catal og.'>
> # end of Paraline
> # end of Para

Remember to include a second Font statement to end the scope of the applied character format.

To locally define a character format, use a complete Font statement:

<Par a
<Pgf Tag " Body' >

<Par aLi ne

<String "You can also format characters by '>

<Font

<FTag " Enphasis' >

.character property statenents...

> # end of Font

<String "applying >
<Font

<FTag "'>

> # end of Font

<String ° a locally defined character format.'>

> # end of Paraline

> # end of Para

ADOBE FRAMEMAKER 6.0
Using MIF Statements

Like paragraph formats, character formats inherit properties from previously defined character formats.
Unlike paragraph formats, however, a character format ends at the close of a Par a statement.

See the sample file char f nt . ni f for examples of using character formats.

Creating and formatting tables

You can create tables in FrameMaker documents, edit them, and apply table formats to them. Tables can
have heading rows, body rows, and footing rows. Each row consists of table cells that contain the actual

contents of the table.

Table 1: Coffee Inventory Title
Coffee Bags Status Price per bag -| Heading row
Brazil Santos 50 Prompt $455.00
Celebes Kalossi 29 In Stock $924.00 | Body rows
Colombian 25 In Stock $474.35
$1,853.35 — Footing row

Tables are like paragraphs in that they have a format. A table format controls the appearance of a table,

including the number and width of columns, the types of ruling or shading in rows and columns, and the

table’s position in a text column. Table formats can be named, stored in a Table Catalog, and applied to

many tables. A table format can also be defined locally.

30

ADOBE FRAMEMAKER 6.0 |31
Using MIF Statements

In a FrameMaker document, tables appear where they have been placed in the text flow. A table behaves
like an anchored frame, so a table flows with the surrounding text unless you give it a specific location. In
a MIF file, the document’s tables are collected in one place and a placeholder for each table indicates the
table’s position in the text flow.

You create a table in a MIF file as follows:

- Specify the contents of the table by using a Tbl statement. An individual table is called a table instance.
All table instances are stored in one Thl s statement. Assign each table instance a unique ID number.

- Indicate the position of the table in the text flow by using an ATbl statement. The AThl statement is the
placeholder, or anchor, for the table instance. It refers to the table instance’s unique ID.

= Specify the table format by usinga Tbl For mat statement. Formats can be named and stored in the Table
Catalog, which is defined by a Tbl Cat al og statement, or locally defined within a table.

Creating a table instance

All table instances in a document are contained in a Thl s statement. The Thl s statement contains a list of
Tbl statements, one for each table instance. A document can have only one Tbl s statement, which must
occur before any of the table anchors in the text flow.

The Thl statement contains the actual contents of the table cells in a list of MIF substatements. Like other
MIF statements, this list can be quite long. The following is a template for a Tbl statement:

<Tbl
<Tbl I D..> # A unique ID for the table
<Tbl For mat ..> # The table format
<Tbl NunCol ums..> # Nurmber of columms in this table--required
<Tbl Col umW dt h..» # Col um wi dth, one for each colum
<Tbl H # The heading; onmt if no heading
<Row # One Row statenent for each row
<Cel | ..> # One statement for each cell in the row
> # end of Row
<Tbl Body # The body of the table
<Row..> # One for each row in body
> # end of Tbl Body
<Tbl F # The footer; omt if no footer
<Row..> # One for each row in footer
> # end of ThblF
> # end of Tbl

The Thl | Dstatement assigns a unique ID to the table instance. The Thl For mat statement provides the
table format. You can use the Tbl For mat statement to apply a table format from the Table Catalog, apply
a format from the catalog and override some of its properties, or completely specify the table format locally.
Because the tables in a document often share similar characteristics, you usually store table formats in the
Table Catalog. Table instances can always override the applied format.

ADOBE FRAMEMAKER 6.0 |32
Using MIF Statements

The Thl NuntCol urms statement specifies the number of columns in the table instance. It is required in

every table.

The Tbl H, Tbl Body, and Thl F statements contain the table heading, body, and footer rows. If a table does
not have a heading or footing, omit the statements.

Here’s an example of a simple table that uses a default format from the Table Catalog. The table has one
heading row, one body row, and no footing rows:

Coffee

Price per Bag

Brazil Santos

$455.00

You can use the following MIF statements to create this simple table:

<M FFi |l e 6. 00>
<Thbl s
<Tbl
<Tbl I D 1>
<Tbl Tag " Format A' >
<Tbl NunCol umms 2>
<Tbl Col uymW dth 2.0">
<Tbl Col uymWdth 1.5">
<Tbl H
<Row
<Cel |
<Cel | Cont ent

H OH OH OH OH OH O H O H

F*

<Par a
<Pgf Tag "Cel | Headi ng' > #
<Par aLi ne

<String "Coffee' > #
>

>

>
>
<Cel |
<Cel | Cont ent

H OH OH OH

<Par a
<Pgf Tag " Cel | Headi ng' >

<Par aLi ne

IDfor this table

Applies format from Tabl e Catal og
Nunmber of colums in this table
Wdth of first colum

Wdth of second col um

Begi n tabl e headi ng

Begi n row

First cell in row

Cel | s can contain paragraphs

Applies format from Paragraph Catal og

Text in this cell

end of Para
end of Cell Content
end of Cell

Second cell in row

<String "Price per Bag' >

> #

end of Para

> #
> #
> #
> #
<Tbl Body #
<Row #
<Cel | #
<Cel | Cont ent
<Par a
<Pgf Tag " Cel | Body' >
<Par aLi ne
<String "Brazil Santos'>
>
> #
> #
> #
<Cel | #
<Cel | Cont ent
<Par a
<Pgf Tag " Cel | Body' >
<Par aLi ne
<String " $455.00' >
>
> #
> #
> #
> #
> #
> #
> #

end
end
end

end

of
of
of

of

ADOBE FRAMEMAKER 6.0
Using MIF Statements

Cel | Cont ent
Cel |
Row
Tbl H

Tabl e body

Begi n row

First cell in row

end
end

end

Second

end
end
end
end
end
end

end

of
of

of

of
of
of
of
of
of

of

Par a
Cel | Cont ent
Cel |

cell in row

Par a

Cel | Cont ent
Cel |

Row

Tbl Body

Thl

Tbl s

A table cell is a text column that contains an untagged text flow not connected to any other flows. You can
put any kind of text or graphics in a table cell. The cell automatically grows vertically to accommodate the
inserted text or graphic; however, the width of the column remains fixed.

Adding a table anchor

To indicate the position of a table in the text flow, you must add an ATbl statement. The ATbl statement
refers to the unique ID specified by the Thl | Dstatement in the table instance. For example, to insert the
table defined in the previous example, you would add the following statements to the minimal MIF file:

<Par a

<Par alLi ne

33

ADOBE FRAMEMAKER 6.0 |34
Using MIF Statements

<String " Coffee prices for January'>

<ATbl 1> # Matches table IDin Thl statenent
> # end of Paraline
> # end of Para

This example is in the sample file t abl e. ni f . If you open this file in a FrameMaker product, you'll see
that the anchor symbol for the table appears at the end of the sentence. To place the table anchor between
two words in the sentence, use the following statements:

<Par a
<Par alLi ne
<String “Coffee prices '>
<ATbl 1>
<String “for January'>
> # end of Paraline
> # end of Para
Note that the ATbl statement appears outside the St r i ng statement. A Par aLi ne statement usually
consists of St r i ng statements that contain text interspersed with statements for table anchors, frame
anchors, markers, and cross-references.

About ID numbers

The table ID used by the ATbl statement must exactly match the ID given by the Tbl | Dstatement. If it
does not, the MIF interpreter ignores the ATbl statement and the table instance does not appear in the
document. You cannot use multiple ATbl statements that refer to the same table ID.

An ID can be any positive integer from 1 to 65535, inclusive. The only other statements that require an 1D
are AFr ane statements, linked Text Rect statements, and Gr oup statements. For more information about
these statements, see “Graphic objects and graphic frames” on page 119.

Rotated cells

A table can have rotated cells and straddle cells. The following table includes rotated cells in the heading
row:

Coffee
Price

Brazil Santos $455.00

In a MIF file, a cell that is rotated simply includes a Cel | Angl e statement that specifies the angle of
rotation:

<Cel |
<Cel | Angl e 270>

<Cel | Cont ent ..>
> # end of Cell

ADOBE FRAMEMAKER 6.0 |35
Using MIF Statements

Cells can only be rotated by 90, 180, or 270 degrees. Cells are rotated clockwise.

Straddle cells

The contents of a straddle cell cross cell borders as if there were a single cell. You can straddle cells horizon-
tally or vertically. The following table includes a heading row that straddles two columns:

Brazilian Coffee

Coffee Price per Bag

Brazil Santos $455.00

The MIF code for the straddle cell includes a Cel | Col unms statement that specifies the number of
columns that the cell crosses. The contents of the straddle cell appear in the first of the straddle columns;
the subsequent Cel | statements for the row must appear even if they are empty.

<Row
<Cel |
<Cel | Col ums 2> # Nunber of straddle colums.
<Cel | Cont ent # Content is in the first cell.
<Par a
<Pgf Tag " Cel | Headi ng' >
<Par aLi ne
<String "Brazilian Coffee'>
>
> # end of Para
> # end of Cell Content
> # end of Cell
<Cel | # Second cel |l appears, even though
<Cel | Cont ent # it is enpty.
<Par a

<Pgf Tag " Cel | Headi ng' >
<Par aLi ne>
> # end of Para
> # end of Cell Content
> # end of Cell
> # end of Row
If the cell straddles rows, the substatement is Cel | Rows.

Creating a table format
A table format includes the following properties:

= The properties specified by the Table Designer

ADOBE FRAMEMAKER 6.0 |36
Using MIF Statements

= These include the row and column ruling and shading styles, the position of text within cell margins, the
table’s placement within the text column, and the table title position.

» The number and widths of columns
= The paragraph format of the first paragraph in the title (if there is one)
= The paragraph format of the topmost paragraph in the heading, body, and footing cell of each column

For example, you could change the format of the previous table to include shaded rows and a different
ruling style;

Coffee Price per Bag
Brazil Santos $455.00
Celebes Kalossi $924.00
Colombian $474.35

The following MIF statements define this table format:
<Tbl For mat
<Tbl Tag " Coffee Table'>

Every table nust have at |east one Tbl Col um
statenent.

<Tbl Col um
<Tbl Col umNum 0> # Col umms are nunbered from O.
<Tbl Col umwWdth 2.0"> # Wdth of first colum.
> # end of Tbl Col um
<Tbl Col um
<Tbl Col umNum 1> # Second col um.
<Tbl Col umWdth 1.5"> # Wdth of second col um.
> # end of Tbl Col um
<Tbl Cel | Margins 6.0 pt 6.0 pt 6.0 pt 4.0 pt>
<Tbl LI ndent 0.0"> # These are exactly |ike paragraph
<Tbl RI ndent 0.0"> # format properties.

<Tbl Al'i gnnent Center >
<Tbl Pl acement Anywhere >
<Tbl SpBefore 12.0 pt>
<Tbl SpAfter 12.0 pt>
<Tbl Bl ockSi ze 1>

<Tbl HFFi I | 15> # No fill for heading row
<Tbl HFCol or "Bl ack' >
<Tbl BodyFill 5> # Use 10%gray fill for main body rows.

<Tbl BodyCol or "Bl ack' >

ADOBE FRAMEMAKER 6.0
Using MIF Statements

<Tbl ShadeByCol utmm No > # Shade by row, not by col um.
<Tbl ShadePeri od 1> # Shade every other row.

<Tbl XFi Il 15> # No fill for alternate rows.
<Tbl XCol or "Bl ack"' > # Color for alternate rows.

<Tbl Al t ShadePeri od 1>

<Tbl LRuli ng " Thin'> # Use thin left outside rule.
<Tbl BRuli ng " Thin'> # Use thin bottom outside rule.
<Tbl RRuling " Thin'> # Use thin right outside rule.
<Tbl TRul i ng ~ Medi um > # Use medium top outside rule.
<Tbl Col umRul ing " Thin'> # Use thin rules between col ums.
<Tbl XCol umRuling "~ Thin'>

<Tbl BodyRowRul i ng "~ Thin' > # Use thin rules between rows.
<Tbl XRowRul i ng "~ Thin' >

<Tbl HFRowRul i ng ' > # No rul es between headi ng rows.

<Tbl SeparatorRuling ~Medium > # Use mediumrule after heading row.
<Tbl XCol utmNum 1>

<Tbl Rul i ngPeriod 4>

<Tbl Last BRul i ng No >

<Tbl Titl ePl acement |nHeader> # Place title above table.

<Tbl Titl ePgf1 # Paragraph format for first
<Pgf Tag "TableTitle' > # paragraph in title.

> # end of TblITitlePgfl

<Tbl TitleGap 6.0 pt> # Gap between title and table.

<Tbl I ni t NunCol utms 2> # Initial nurmber of rows and

<Tbl I ni t NumHRows 1> # colums for new tables with

<Tbl | ni t NumBodyRows 4> # this format.

<Tbl I ni t NunFRows 0>

<Tbl NunByCol utTm No >

> # end of Tbl For nat

The Tbl Col unm statement numbers each column and sets its width. A table can have more columns than
Tbl Col unm statements; if a column does not have a specified format, the MIF interpreter uses the format
of the most recently defined column.

Note: A table instance must have at least one Thl Col urm statement. A table can use a format from the Table
Catalog that includes a Thl Col unm statement or it can include a local Thl For mat statement that supplies
the Thl Col umm statement.

Adding a Table Catalog

You can store table formats in a Table Catalog by using a Thl Cat al og statement. A document can have
only one Thl Cat al og statement, which must occur before the Thl s statement.

37

ADOBE FRAMEMAKER 6.0
Using MIF Statements

The Tbl Cat al og statement contains one Thl For mat statement for each format, as shown in the
following template:
<Tbl Cat al og
<Tbl For mat ..>
<Tbl For mat ..>
> # end of Tbl Catal og

As with the Paragraph Catalog, if your MIF file does not provide a Table Catalog, the MIF interpreter
supplies a default catalog and formats. If you do provide a Table Catalog, your defined table formats
supercede those in the default Table Catalog.

You can add a minimal table format to the catalog by simply supplying a table format tag name. The MIF
interpreter supplies a set of default values to the table’s properties when it reads in the MIF file.

The ruling styles in a table format are defined in a separate catalog called the Ruling Catalog. You can define
your own Ruling Catalog with the Rul i ngCat al og statement. Whether you use the default ruling styles
or create your own, substatements that refer to ruling styles, such as the Thl LRul i ng statement, must
use the name of a ruling style from the Ruling Catalog. See “RulingCatalog statement” on page 93.

Applying a table format
You can apply a table format from the Table Catalog or you can define a table format locally.

To apply a table format from the Table Catalog, use the Thl Tag statement within the Thl statement:

<Tbl s
<Thbl
<Tbl I D 1>
<Tbl Tag " Format A' > # Tag of format in Table Catal og
<Tbl NunCol umms 1>

<Tbl Body

> # end of Tbl Body
> # end of Tbl
> # end of Thls

To locally define a table format, use a complete Tbl For mat statement:

<Thbl s

<Tbl
<Tbl I D 1>
<Tbl For mat

<Thl Tag *~ '>
Every table nust have one Tbl Col uim statenent.
<Tbl Col um
<Tbl Col unmnNum 0>
<Tbl Col umWdth 1.0">

38

ADOBE FRAMEMAKER 6.0 |39
Using MIF Statements

> # end of Tbl Col um
.table property statenents...
> # end of Tbl For nat
> # end of Tbl
> # end of Tbls

Creating default paragraph formats for new tables

You can use the Tbl For mat and Tbl Col unm statements to define default paragraph formats for the
columns in new tables. These default formats do not affect tables that are defined within the MIF file; they
only affect tables that the user inserts after the MIF file has been opened in a FrameMaker product. Your
filter or application should provide these defaults only for documents that might be edited later.

For example, the following MIF code assigns a paragraph format named Description to body cells in new
tables that are given the format called Coffee Table:
<Tbl For mat
<Tbl Tag " Coffee Table'>
<Tbl Col um
<Tbl Col utmNum 0>
<Tbl Col umwWdth 1.0">
<Tbl Col utmBody
<Pgf Tag "Description' >
> # end of Tbl Col umBody
> # end of Tbl Col umtm
> # end of Tbl For nat

Tables inherit properties differently

Tables inherit formatting properties somewhat differently than other document components. A table
without an applied table format does not inherit one from a previously defined table. Instead, it gets a set
of default properties from the MIF interpreter. Thus, if you apply a named format to a table, a following
table will not inherit that format.

Paragraphs in table cells still inherit properties from previously defined paragraph formats. If you give a
table cell a certain paragraph style, all subsequent cells inherit the same property unless it is explicitly reset.
Table cells can inherit paragraph properties from any previously specified paragraph format, including
other tables, paragraphs, or even the Paragraph Format catalog.

Tips
To avoid problems when creating tables:
- Give each table a unique ID number.

- Make sure that each Thl statement has only one corresponding ATbl statement, and that each ATbl
statement has a corresponding Thl statement.

- Make sure that each ATbl statement matches the ID of its corresponding table instance.

ADOBE FRAMEMAKER 6.0 |40
Using MIF Statements

Specifying page layout

FrameMaker documents have two kinds of pages that determine the position and appearance of text in the
document: body pages and master pages.

Body pages contain the text and graphics that form the content of the document. Master pages control the
layout of body pages. Each body page is associated with one master page, which specifies the number, size,
and placement of the page’s text frames and the page background, such as headers, footers, and graphics.

ntagged]

background text

frame

———— | — On body pages, you type in a
Tagged — column of a tagged text
template text — frame.
frame ——

ntagged [

background text
frame

Master page Body page

Text frames define the layout of the document’s text on a page. A text frame can arrange text in one or more
columns. In MIF, a text frame is represented by a Text Rect statement. The dimensions of the text frame
and the number of columns in the text frame are specified by substatements under the Text Rect
statement.

A text flow describes the text contained in one or more text frames. In MIF, a text flow is represented by a
Text FI owstatement. The actual text of the document is specified by substatements under the Text Fl ow
statement.

If the text flow has the autoconnect property (if the text flow uses the MIF statement <TFAut oConnect
Yes>), the text flow runs through a series of text frames; when you fill up one text frame, text continues
into the next text frame. Most documents have only one text flow, although you can create many separate
flows.

A FrameMaker product provides a default right master page for single-sided documents and default right
and left master pages for double-sided documents. A MIF file can either use the default page layout or
provide a custom layout.

Using the default layout

If you don’t need to control the page layout of a document, you can use the default page layout by putting
all of the document’s text into a Text FI owstatement. When reading the file, the MIF interpreter creates
default master pages and body pages. The MIF file creates a single-column text frame for the body pages
to contain the document’s text. The MIF interpreter associates the text flow with this text frame.

The following example is in the sample file def page. mi f :

<M FFil e 6. 00> # Hand generated

<Text Fl ow # Al docunent text is in this text flow.

ADOBE FRAMEMAKER 6.0
Using MIF Statements

<TFTag A > # Make this a tagged text flow
<TFAut oConnect Yes> # Automatically connect text franes.
<Par a

<Par aLi ne

<String "This paragraph appears on a body page within a'>
<String * text flow tagged A '>
> # end of Paraline
> # end of Para
> # end of TextFl ow
End of MFFile

A text flow must be tagged, and it must include <TFAut oConnect Yes>; otherwise, when the user adds
text to the document, the FrameMaker product won't create additional pages and text frames to hold the
added text.

Creating a simple page layout

If you want some control of the page layout but do not want to create master pages, you can use the
Docunent substatements DPageSi ze, DVar gi ns, and DCol urms to specify the page size, margins, and
number of columns in the text frame in the document. The MIF interpreter uses this information to create
master pages and body pages. These statements correspond to the Normal Page Layout options.

The following example is in the sample file col um ay. mi f :

<M FFi |l e 6. 00> # Hand gener at ed

<Docunent

<DPageSi ze 7.5" 9.0"> # Set the page size.
<Dwargins 2" 1" .5" .5"> # Set the margins.
<DCol ums 1> # Set the nunber of columms in the default
text frane.

<DTwoSi des No> # Set docunent to single-sided.
> # end of Docunent
<Text Fl ow # Docunent text is in this text flow
<TFTag A > # Make this a tagged text flow
<TFAut oConnect Yes> # Automatically connect text franes.
<Par a

<Par aLi ne

<String "This paragraph appears on a body page within a'>
<String ° text flow tagged A '>
> # end of Paraline
> # end of Para
> # end of TextFl ow
End of MFFile

41

ADOBE FRAMEMAKER 6.0
Using MIF Statements

Creating a single-sided custom layout

If the document that you're importing needs a custom master page, you must specify a custom page layout.
For example, a document might need a master page for background graphics.

To create a custom layout for a single-sided document, you do the following:

- Create a right master page.

- Create a single, empty body page.

- Create an empty, tagged text flow that is linked to the master page.

- Create a tagged text flow that is linked to the body page and contains all the document’s text.

The MIF code shown in this section is also in the sample file sngl page. mi f.

To create the master page

To create a master page layout, use the Page statement to create the page and use the Text Rect statement
to create the text frame.

To specify the number of text columns in the text frame, use the TRNunCol unms statement. By default, if
the text frame’s specification does not include this statement, the text frame has only one column.

This example sets up a right master page with a text frame containing one text column:

<M FFil e 6. 00> # Hand generated

<Docunent

<DPageSi ze 7.5" 9.0"> # Set the docunent page size.
<DTwoSi des No> # Make this a single-sided docunent.
> # end of Docunent

<Page # Create a right master page.

<PageType Ri ght Mast er Page>
<PageTag "Right'>

<Text Rect # Set up a text frane.
<ID 1> # Gve the text frane a unique |D.
<Pen 15> # Set the pen style.
<Fill 15> # Set the fill pattern (none).
<ShapeRect 2" 1" 5" 7.5"> # Specify the text frame size.
<TRNunCol utms 1> # Speci fy nunber of text columms.
<TRCol umGap 0.0"> # Specify gap between text colums.

> # end of Text Rect

> # end of Page

The | Dstatement assigns a unique 1D number to this text frame. You must give text frames a unique ID in
a MIF file; other objects that require unique IDs are anchored graphic frames and table instances.

42

ADOBE FRAMEMAKER 6.0
Using MIF Statements

To create an empty body page

To create the body page, use the Page statement. Then use the Text Rect statement to create a text frame
with dimensions that are exactly the same as the text frame on the master page. Give the text frame a unique
ID:

<Page
<PageType BodyPage>
<PageBackground "“Default'>
<Text Rect
<ID 2> # This text frame has a uni que |D.
The body page di nensions natch those of the
master page.
<ShapeRect 2" 1" 5" 7.5">

<TRNunmCol urms 1> # The colum | ayout nust al so match.
<TRCol umGap 0.0">

> # end Text Rect

> # end Page

If the dimensions (specified by the ShapeRect statement) and column layout (specified by the TRNum
Col urms and TRCol unmGap statements) of the master page and body page do not match, the body page
will not use the page layout from the master page. Instead, the body page will use the page layout defined
for the body page.

To create the text flow for the master page

The text flow for the master page is not contained in the Page statement; instead, it is contained in a
Text FI owstatement that is linked to the text frame on the master page. The Page statements must come
before any Text Fl ow statements.

Link the text flow to the master page’s text frame by using the Text Rect | D statement to refer to the text
frame’s unique ID;

<Text Fl ow

<TFTag A > # The text flow nmust be tagged.

<TFAut oConnect Yes> # Aut oconnect nust be turned on.

<Par a
<Par aLi ne
<Text Rect1D 1> # Refers to text frame |ID on naster page.
> # end of Paraline

> # end of Para

> # end of TextFl ow

The text flow for the master page must be empty. Be sure to give the text flow the same flow tag that you
give the text flow for the body page and to turn on the autoconnect feature.

43

ADOBE FRAMEMAKER 6.0
Using MIF Statements

To create the text flow for the body page

The text flow for the body page is contained in a separate Text FI owstatement that is linked to the body
page’s text frame. The text flow contains the actual text of the document in one or more Par a statements.
If text overflows the first text frame, the MIF interpreter creates another body page with a layout that
matches the right master page and pours text into the body page’s text frame.
<Text Fl ow
<TFTag "A >
<TFAut oConnect Yes>
<Par a
<Text Rect | D 2>
<Pgf Tag " Body' >
<Par aLi ne
<String “This appears on a body page within a text flow >
<String ° tagged A '>
> # end of Paraline
> # end of Para

> # end of TextFl ow

Why one body page?

The method you use to create body pages is different from the method that a FrameMaker product uses
when it writes a MIF file. When a FrameMaker product writes afile, it knows where each page break occurs
in the file, so it creates a series of Page statements that each contain the text and graphics located on that
page. When you are importing a document, you do not know where page breaks will fall, so you cannot
break the document into a series of Page statements. Instead, you simply create one text flow for the entire
document and link it to a single, empty body page. When the MIF interpreter reads the file, it creates as
many pages as the document requires and gives each page the background specified by the master page.

Creating a double-sided custom layout

If you import a two-sided document, you might need to specify different page layouts for right and left
pages. For example, a document might have a wider inside margin to allow extra room for binding. You
can do this in a MIF file by creating and linking a second master page and a second body page. As with a
single-sided layout, all the document’s text is in one text flow. When the MIF interpreter reads the file, it
adds alternate left and right body pages to the document. You can control whether the document starts
with a right page or a left page by using the DPar i t y statement.

For an example of a document with left and right master pages, see the sample file dbl page. mi f .

Creating a first master page

In addition to left and right master pages, you can create custom master page layouts that you can apply to
body pages. For example, some books have a special layout for the first page in a chapter.

44

ADOBE FRAMEMAKER 6.0 |45
Using MIF Statements

In a MIF file, you can create as many master pages as you need, but you cannot apply all of them to the
appropriate body pages. You can only apply a left page, a right page, and one additional custom master page
to the body pages. Furthermore, you can only link the custom master page to the first page in a document.

When you are importing a document into a FrameMaker product, you do not know how much text the
MIF interpreter will put on a page; you can only determine where the first page begins. When the inter-
preter reads the MIF file, it applies the custom master page layout to the first page in the document. For
each subsequent page, it uses the DPar i t y and DTwoSi des statements to determine when to add a left
page and when to add a

right page.

Other master page layouts that you've defined are not lost when the interpreter reads a MIF file. The user
can still apply these page layouts to individual body pages.

For an example of a MIF file with a first page layout, see the sample file f r st page. mi f.

Adding headers and footers

Headers and footers are defined in untagged text flows on the master pages of a document. When a
FrameMaker product creates default master pages, it automatically provides untagged text flows for
headers and footers.

If you are importing a document that has headers and footers, you define additional text frames on the
master pages. Link an untagged text flow to each additional text frame on the master page. The untagged
text flow contains the text of the header or footer.

For an example of a MIF file with a footer, see the sample file f oot er s. ni f . Note that the footer text flow
contains a variable; you can place variables only in untagged text flows on a master page, not in tagged
flows.

Creating markers

A FrameMaker document can contain markers that hold hidden text and mark locations. For example, you
use markers to add index entries, cross-references, and hypertext commands to a document. A
FrameMaker product provides both predefined marker types and markers that you can define as needed.
(For more information about markers and marker types, see page 145.)

Within a FrameMaker document, you insert a marker by choosing the Marker command from the Special
menu. In a MIF file you insert a marker by using a Mar ker statement. The Mar ker statement specifies the
marker type and the marker text.

The following example inserts an index marker:

<Par a

<Par aLi ne
<Mar ker
<Mlype 2> # | ndex marker
<MText “Hello world' ># Index entry
> # end of Marker

ADOBE FRAMEMAKER 6.0 |46
Using MIF Statements

<String "Hello world" >
> # end of Paraline
> # end of Para

The MText statement contains the complete index entry.

When a FrameMaker product writes a Mar ker statement, the statement includes an MCur r Page
substatement with the page number on which the marker appears. You do not need to provide an

MCur r Page statement when you generate a MIF file; this statement is ignored when the MIF interpreter
reads a MIF file.

Creating cross-references

In a FrameMaker document, you can create cross-references that are automatically updated. A cross-
reference can refer to an entire paragraph or to a particular word or phrase in a paragraph. The text to
which a cross-reference points is called the reference source; the actual location of the cross-reference is the
reference point.

The format of a cross-reference determines its appearance and the wording. Cross-reference formats
include building blocks, instructions to a FrameMaker product about what information to extract from the
reference source. A common building block is <$pagenunw, which a FrameMaker product replaces with
the page number of the reference source.

Within a FrameMaker document, you insert and format cross-references by choosing Cross-Reference
from the Special menu. In a MIF file, you create a cross-reference as follows:

- Create the format of cross-references by using XRef For mat s and XRef For mat statements.
= Insert a marker at the reference source by using a Mar ker statement.

= Insert the reference point by using an XRef statement.

Creating cross-reference formats

The cross-reference formats for a document are defined in one XRef For mat s statement. A document can
have only one XRef For nat s statement.

The XRef For mat s statement contains one or more XRef For mat statements that define the cross-
reference formats. A cross-reference format consists of a name and a definition.
<XRef For mat s
<XRef For mat
<XRef Nane " Page' >
<XRef Def " page\x11l <$pagenum >' >
> # end of XRef For mat
> # end of XRefFornmats

The name can be any string allowed in a MIF file (see “Character set in strings” on page 13). In this
example, a nonbreaking space (\ x11) appears between the word “page” and the page number. Each cross-
reference format must have a unique name; names are case-sensitive. The cross-reference definition

ADOBE FRAMEMAKER 6.0
Using MIF Statements

contains text and cross-reference building blocks. See your user’s manual or the online Help system for a
list of building blocks.

Inserting the reference source marker
To mark the location of the reference source, insert a Mar ker statement at the beginning of the reference
source. The following example creates a cross-reference to a heading:
<Par a
<Pgf Tag " Headi ng' >
<Par aLi ne
<Mar ker
<MIype 9> # ldentifies this as a cross-reference
<MText ~34126: Heading: My Heading' >
Cross-reference source
> # end of Marker
<String *My Heading' >
> # end of Paraline
> # end of Para

The <MType 9> statement identifies this as a cross-reference marker; it is required. The MText statement
contains the cross-reference source text, which must be unique. When a FrameMaker product writes a
cross-reference, it adds a unique number and the paragraph tag to the Mrext statement, as shown in the
previous example. While the number is not required, it guarantees that the cross-reference points to a
unique source.

Inserting the reference point
The final step in creating a cross-reference is to insert an XRef statement at the position in text where the
cross-reference should appear. The XRef statement provides the name of the cross-reference format
(defined in XRef For mat), the source text, and the pathname of the file containing the source:
<Par a
<Pgf Tag " Body' >
<Par aLi ne
<String "This is a cross-reference to '>
<XRef
<XRef Nane °~ Page' > # Cross-reference format
<XRef SrcText "34126: Heading: My Heading' >
Source text
<XRef SrcFile *'> # File containing source
> # end of XRef
<XRef End>
<String *.'>

> # end of Paraline

47

ADOBE FRAMEMAKER 6.0 |48
Using MIF Statements

> # end of Para

The format name must exactly match the name of a format defined in XRef For mat s. The source text must
be unique and must match the string in the Mrext statement in the corresponding reference point marker.
The XRef Sr cFi | e statement is only required if the reference source is in a different file from the reference
point. It must be a valid MIF filename (see “Device-independent pathnames” on page 13).

You must also supply an XRef End statement after the XRef statement.

How a FrameMaker product writes cross-references

When a FrameMaker product writes a cross-reference, it provides the actual text that will appear at the
reference point. This information is not required in a MIF input file. The previous example would be
written as follows:

<XRef

<XRef Nane °~ Page' >

<XRef SrcText *34126: Heading: My Heading' >

<XRef SrcFile ' >

> # end of XRef

<String “page' > # The text that appears in the docunent;
<Char HardSpace ># in this case, a page nunber followed a
<String "1'> # hard space and the nunmber 1

<XRef End> # End of cross-reference text

If you do include the text of the cross-reference, make sure that the XRef End statement follows the text. A
FrameMaker product considers everything between the XRef statement and the XRef End statement to be
part of the cross-reference.

Creating variables

In a FrameMaker document, variables act as placeholders for text that might change. For example, many
documents use a variable for the current date. A variable consists of a name, which is how you choose a
variable, and a definition, which contains the text and formatting that appear where a variable is inserted.

A FrameMaker product provides two kinds of variables: system variables that are predefined by the
FrameMaker product, and user variables that are defined by the user. System variables contain building
blocks that allow a FrameMaker product to extract certain information from the document or the system,
such as the current date or the current page number, and place it in text. Headers and footers frequently
use system variables. You can modify a system variable’s definition but you cannot create new system
variables. User variables contain only text and formatting information.

Within a FrameMaker document, you insert and define variables by choosing Variable from the Special
menu. The variable appears in the document text where it is inserted.

In a MIF file, you define and insert variables as follows:

- Define and name the document variables by using Var i abl eFor mat s and Var i abl eFor mat state-
ments.

ADOBE FRAMEMAKER 6.0
Using MIF Statements

= Insert the variable in text by using the Var i abl e statement.

Defining user variables
All variable definitions for a document are contained in a single Var i abl eFor mat s statement. The
Var i abl eFor mat s statement contains a Var i abl eFor mat statement for each document variable. The
Vari abl eFor mat statement provides the variable name and definition.
<Vari abl eFor mat s
<Vari abl eFor mat
<Vari abl eName " Product Nunber'>
<Vari abl eDef " A15-24'>
> # end of Vari abl eFor mat
> # end of Vari abl eFormats

The variable name must be unique; case and spaces are significant. For a user variable, the variable
definition can contain only text and character formats; you can provide any character format defined in

the Character Catalog. The following example applies the default character format Emphasis to a variable:

<Vari abl eFor mat

<Vari abl eNane " Product Nunber'>

<Vari abl eDef *<Enphasi s\ >Al15-24<Default \xa6 Font\>'>
> # end of Vari abl eFor mat
You can specify character formats as building blocks; that is, the character format name must be enclosed
in angle brackets. Because of MIF parsing requirements, you must use a backslash sequence for the closing
angle bracket. You must also use hexadecimal notation for special characters in the variable definition. In
this example, \ xa6 is the hex notation for the paragraph symbol (). For more information about special
characters in strings, see page 13.

Using system variables

Whenever you open or import a MIF file, the MIF interpreter provides the default system variables. You
can redefine a system variable but you cannot provide new system variables.

System variables are defined by a Var i abl eFor mat statement. For example, the following statement
shows the default definition for the system variable Page Count:

<Vari abl eFor mat
<Vari abl eNane " Page Count'>
<Vari abl eDef °<$| ast pagenum >' >
> # end of Vari abl eFor mat

System variables contain building blocks that provide certain information to a FrameMaker product.
These building blocks are preceded by a dollar sign ($) and can only appear in system variables. Some
system variables have restrictions on which building blocks they can contain. These restrictions are
discussed in your user’s manual and in the online Help system. You can add any text and character
formatting to any system variable.

49

ADOBE FRAMEMAKER 6.0
Using MIF Statements

Inserting variables
To insert a user variable or a system variable in text, use the Var i abl e statement. The following example
inserts the system variable Page Count into a paragraph:
<Par a
<Par aLi ne
<String "This docunent has '>
<Vari abl e
<Vari abl eNane " Page Count'>
> # end of Variable
<String " pages.'>
> # end of Paraline
> # end of Para

The Var i abl eName string must match the name of a variable format defined in the var i abl eFor mat s
statement.

Variables are subject to the following restrictions:

= You cannot place any variable in a tagged text flow on a master page.

= The system variable Cur r ent Page # and the system variables for running headers and footers can only
appear in untagged text flows on a master page.

= The system variables Table Continuation and Table Sheet can only appear in tables.

Creating conditional text

You can produce several slightly different versions of a document from a single conditional document. In
a conditional document, you use condition tags to differentiate conditional text (text that is specific to one
version of the document) from unconditional text (text that is common to all versions of the document).

In a MIF file, you create a conditional document as follows:

= Create the condition tags to be used in the document and specify their format via Condi t i onCat al og
and Condi t i on statements.

= Apply one or more condition tags to the appropriate sections of the document via Condi ti onal and
Uncondi ti onal statements.

= Show or hide conditional text by using the CSt at e statement.

Creating and applying condition tags

In MIF, all condition tags are defined in a Condi ti onCat al og statement, which contains one or more
Condi t i on statements. A Condi t i on statement specifies the condition tag name, the condition
indicators (how conditional text appears in the document window), a color, and a state (either hidden or
shown).

For example, the following statements create a Condition Catalog with two conditional tags named
Summer and Winter:

50

ADOBE FRAMEMAKER 6.0 |51
Using MIF Statements

<Condi ti onCat al og
<Condi ti on

<CTag " Summer' > # Condition tag nane
<CState CH dden > # Condition state (now hidden)
<CStyle COverline > # Condi tion indicator
<CCol or "Bl ue'> # Condi tion indicator
> # end of Condition
<Condi tion

<CTag “Wnter'>
<CSt ate CShown > # This condition is shown
<CStyle Cunderline >
<CCol or " Red' >
> # end of Condition
> # end of ConditionCatal og

To mark conditional and unconditional passages within document text, use Condi t i onal and UnCondi -
tional statements as shown in the following example:

<Par a
<Par aLi ne
<String “Qur conpany nakes a full line of '>
Uncondi tional text
<Condi ti onal # Begin conditional text
<InCondition “"Wnter'> # Specifies condition tag
> # end of Conditional

<String "warm and soft sweaters'>
Condi ti onal text

<Condi ti onal # Begin conditional text
<InCondition *Sumer'> # Specifies condition tag
> # end of Conditional

<String "cool and confortable tank tops'>
<Uncondi tional >
<String ° for those '> # Uncondi tional text
> # end of Paraline
<Par aLi ne
<Condi ti onal
<InCondition “Wnter'>
> # end of Conditional
<String “chilly winter'>
<Condi ti onal
<InCondition " Sumrer' >
> # end of Conditional

ADOBE FRAMEMAKER 6.0 |52
Using MIF Statements

<String "hot summer'>
<Uncondi tional >
<String ° days.'>
> # end of Paraline
> # end of Para

You can apply multiple condition tags to text by using multiple | nCondi t i on statements:

<Condi ti onal
<InCondition “Wnter'>
<InCondi tion ~Sumer' >
> # end of Conditional

Showing and hiding conditional text

If you are creating a MIF file for a FrameMaker product to read, you can specify whether conditional text
is shown or hidden simply by setting the CSt at e property for that condition. In the previous example, all
text with the condition tag Sunmer is hidden and text marked with the condition tag W nt er is shown.

You can show all conditional text in a document by using the Docunent statement <DShowAl | Condi -
tions Yes>. To allow selective display of conditions, use <DShowAl | Condi ti ons No>.

You can turn off the display of condition indicators by using the Docunent statement <DDi spl ayOver -
rides No>.

How a FrameMaker product writes a conditional document

If you are converting a MIF file that was generated by a FrameMaker product, you need to understand how
a FrameMaker product writes a file that contains hidden conditional text.

When a FrameMaker product writes a MIF file, it places all hidden conditional text in a text flow with the
tag name HI DDEN. Within the document text flow, a conditional text marker, <Mar ker <MType 10>>,
indicates where hidden conditional text would appear if shown.

The marker text contains a plus sign (+) followed by a unique five-digit integer. The corresponding block
of hidden text is in the hidden text flow. It begins with a conditional text marker containing a minus sign
(-) and a matching integer and ends with a marker containing an equal sign (=) and the same integer. One
or more Par a statements appear between the markers. If the hidden conditional text doesn’t span
paragraphs, all the text appears in one Par a statement. If the hidden text spans paragraphs, each end of
paragraph in the conditional text forces a new Par a statement in the hidden text flow.

The following example shows how a FrameMaker product writes the sentence used in the previous
example:
This text flow contains the sentence as it appears in
the docunent body.
<Text Fl ow
<TFTag "A' >
<TFAut oConnect Yes >

ADOBE FRAMEMAKER 6.0 |53
Using MIF Statements

<Par a
<Par aLi ne
<String “Qur conpany nakes a full line of '>
This marker indicates that hidden text appears in the
hi dden text flow.
<Mar ker
<Mlype 10>

<Mrext " +88793' >
<MCur r Page 0>
> # end of Marker
<Condi ti onal
<InCondi tion " Sumer' >
> # end of Conditional
<String "cool and confortable tank tops'>

<Uncondi tional >

> # end of Para
> # end of TextFl ow
This text flow contains the hidden conditional text.
<Text Fl ow
<TFTag " HI DDEN >
<Par a
<Pgf EndCond Yes >
<Par aLi ne
<Mar ker
<Mlype 10>
This marker shows the begi nning of hidden text.
Its ID matches the marker ID in the body text flow
<Mrlext °-88793' >
<MCur r Page 0>
> # end of Marker
<Condi ti onal
<InCondition “"Wnter'>
> # end of Conditional
Here's the hidden text.
<String “chilly winter'>
<Mar ker
<Mlype 10>
This marker shows the end of hidden text. It nust

match the marker that begins with a mnus sign (-).

ADOBE FRAMEMAKER 6.0
Using MIF Statements

<Mrext ~=88793' >
<MCur r Page 0>
> # end of Marker

>

> # end of Para

> # end of TextFl ow

Including template files

When you write an application, such as a filter or a database publishing application, to generate a MIF file,
you have two ways to include all formatting information in the file:

= Generate all paragraph formats and other formatting information directly from the application.

- Create a template document in a FrameMaker product, save it as a MIF file, and include the template file
in your generated MIF file.

It’s usually easier to create a template in a FrameMaker product than it is to generate the formatting infor-
mation directly.

To create the template as a MIF file, do the following:

1 Create the template in a FrameMaker product and save it as a MIF file.
2 Edit the MIF file to preserve the formatting catalogs and the page definitions and delete the text flow.

3 Generate the text flow for your document and use the i ncl ude statement to read the formatting infor-
mation from the template.

Creating the template

Create the template document in a FrameMaker product. Define the paragraph and character formats,
table formats, variable and cross-reference formats, master pages, and any other formatting and page
layout information that your document needs. Generally, a template contains some sample lines that illus-
trate each format in the document. Save the completed template as a MIF file. For more information about
creating templates, see your user’s manual.

Editing the MIF file

You need to edit the resulting MIF file to extract just the formatting and page layout information.
1 Delete the MIFFile statement.

2 Search for the first body page and locate its TextRect statement.

To find the first body page, search for the first occurrence of <PageType BodyPage>. Suppose the first
body page in your MIF file looks like this:
<Page
<Uni que 45155>
<PageType BodyPage >

54

ADOBE FRAMEMAKER 6.0 |55
Using MIF Statements

<PageNum " 1' >
<PageSi ze 8.5" 11.0">
<PageOrientation Portrait >
<PageAngl e 0. 0>
<PageBackground "“Default'>
<Text Rect

<ID 7>

<Uni que 45158>

<Pen 15>

<Fill 15>

<PenWdth 1.0 pt>

<hCol or "Bl ack' >

<DashedPattern

<DashedStyl e Solid>

> # end of DashedPattern
<ShapeRect 1.0" 1.0" 6.5" 9.0">
<TRNext 0>
> # end of TextRect

> # end of Page

The ID for the Text Rect on this body page is 7. Remember this ID number. If there is more than one
Text Rect on the body page, remember the ID of the first one.

3 Locate the text flow associated with the TextRect statement on the first body page and delete it.
Suppose you are working with the previous example. You would search for the statement <Text Rect | D
7> to locate the text flow. It might look similar to the following:

<Text Fl ow

<Not es> # end of Notes
<Par a
<Uni que 45157>
<Pgf Tag * MyFormat ' >
<Par alLi ne
<TextRectID 7>
<String "Asingle line of text.'>
>
> # end of Para
> # end of TextFl ow

Delete the entire text flow.
4 From your application, generate a MIF file that includes the edited template file.

Suppose the edited MIF file is called myt enpl at e. mi f . Your application would generate the following
two lines at the top of any new MIF file:

ADOBE FRAMEMAKER 6.0
Using MIF Statements

<M FFi l e 6. 00> # CGenerated by ny application
include (nytenplate.mf)

The i ncl ude statement is similar to a C #i ncl ude directive. It causes the MIF interpreter to read the
contents of the file named nmyt enpl at e. nmi f. For more information about filenames in MIF, see
“Device-independent pathnames” on page 13.

5 From your application, generate a text flow that contains the entire document contents.

The text flow should use the ID and tag name of the text flow you deleted from the template file; this
associates the new text flow with the first body page in the template.

The entire generated MIF file would look something like this:

<M FFi |l e 6. 00> # Cenerated by my application
include (mytenplate. mf)
<Text Fl ow
<TFTag A >
<TFAut oConnect Yes>
<TextRect|D 7>
<Par a
<Par aLi ne
<String "This is the content of the generated docunent.'>
>
> # end of Para
> # end of TextFl ow

A user can open the generated MIF file to get a fully formatted FrameMaker document.

Setting View Only document options

You can use MIF statements to control the display of View Only documents. A View Only document is a
locked FrameMaker hypertext document that a user can open, read, and print but not edit. You can use
MIF statements to control the appearance and behavior of the document window and to control the
behavior of cross-references in locked documents.

Note: If you plan to display the View Only document in FrameReader, you need to save the MIF file as a
FrameMaker document. FrameReader cannot read MIF files.

The MIF statements for View Only documents are intended for hypertext authors who want more control
over hypertext documents. They do not have corresponding commands in the user interface.

The View Only MIF statements described in this section must appear in a Docunment statement. These
statements have no effect in an unlocked document. Make sure that the Docunent statement also includes
the following substatement:

<DVi ewOnl y Yes>

56

ADOBE FRAMEMAKER 6.0 |57
Using MIF Statements

Changing the document window

You can use MIF statements to change the appearance and behavior of the document window in the
following ways:

= To suppress the document window menu bar, use the following statement:

<DVi ewOnl yW nMenubar No>

This statement has no effect in the Macintosh and Windows version of a FrameMaker product because
those versions have an application menu bar rather than a document window menu bar.

= To suppress the display of scroll bars and border buttons in the document window, use the following
statement:

<DVi ewOnl yW nBor der s No>

= To suppress selection in the document window, include the following statement:

<DVi ewOnl ySel ect No>

You can normally select text and objects in a locked document by Control-dragging in UNIX and Windows
versions or by Command-dragging in Macintosh versions. Specifying <DVi ewOnl ySel ect No> prevents
all selection in a locked document.

= To suppress the appearance of a document region pop-up menu, use the statement:

<DVi ewOnl yW nPopup No>

A document region pop-up menu is a menu activated by the right mouse button. For example, in UNIX
versions of a FrameMaker product, the Maker menu and Viewer menus can be accessed by pressing the
right mouse button. If the DVi ewOnl yW nPopup statement has a value of No, the background menu does
not appear when the right mouse button is pressed. This statement has no effect in Macintosh and
Windows versions of a FrameMaker product.

= To make a window behave as a palette window, use the following statement:
<DVi ewOnl yW nPal ette Yes>

A palette window is a command window, such as the Equations palette, that exhibits special platform-
dependent behavior. In UNIX versions of FrameMaker products, a palette window can only be dismissed;
it cannot be closed to an icon. In Macintosh versions, a palette always remains in front of the active window.

In Windows versions, a palette floats outside the main application window and cannot be unlocked. To edit
the palette, you need to reset the DVi ewOnl yW nPal et t e statement to No in the MIF file before opening
itin a FrameMaker product.

Using active cross-references

A locked document automatically has active cross-references. An active cross-reference behaves like a
hypertextgot ol i nk command; when the user clicks on a cross-reference, a FrameMaker product displays
the link’s destination page. By default, the destination page is shown in the same document window as the
link’s source.

You can use MIF statements to turn off active cross-references and to change the type of hypertext link that
the cross-reference emulates. (By default, cross-references emulate the got ol i nk behavior.)

ADOBE FRAMEMAKER 6.0 |58
Using MIF Statements

« To make cross-references emulate the openl i nk command, which displays the destination page in a new
document window, use the following statement:

<DVi ewOnl yXRef OpenBehavi or >
Use this setting to allow users to see both the source page and the destination page.

- To turn off active cross-references, use the following statement:
<DVi ewOnl yXRef Not Acti ve>
Use this setting to emulate the behavior in earlier FrameMaker versions.

You can use the DVi ewOnl ySel ect statement to control whether active cross-references highlight the
marker associated with destination text.

= When cross-references are active and <DVi ewOnl ySel ect Yes> is specified, clicking a cross-reference
in the document highlights the marker associated with the destination text.

= When cross-references are active and <DVi ewOnl ySel ect User Onl y> is specified, clicking a cross-
reference does not highlight the marker. However, the user can select text in the locked document.

= When cross-references are active and <DVi ewOnl ySel ect No> is specified, clicking a cross-reference
does not highlight the marker. The user cannot select text in the locked document.

By default, clicking a cross-reference does not highlight the marker associated with the destination text but
the user can select text in the locked document.

Disabling commands
You can disable specific commands in a View Only document. For example, a hypertext author might
disable copy and print commands for sensitive documents.

To disable a command, you must supply the hex code, called an fcode, that internally represents that
command in a FrameMaker product. For example, you can disable printing, copying, and unlocking the
document by supplying the following statements:

<DVi ewOnl yNoOp 0x313># Di sable printing

<DVi ewOnl yNoOp 0x322># Di sabl e copyi ng

<DVi ewOnl yNoOp OxFOO># Di sabl e unl ocki ng the docunent
The following table lists the files where you can find fcodes for commands:

For this version Look here

UNIX $FMHOMVE/ f mi ni t /| anguage/ conf i gui / Conmands, where | anguage is the lan-
guage in use, such as usengl i sh

Windows install_dir/ f mi ni t/ confi gui / cnds.cf g, where install_dir is the directory where
the FrameMaker product is installed

Macintosh f m_codes. h, which is available separately with the Frame Developer’s Kit (FDK)

See the online manual Customizing FrameMaker Products for more information about the commands file
in UNIX versions. For information about disabling commands on the Macintosh, see the Frame
Developer’s Kit (FDK) manuals, available separately.

ADOBE FRAMEMAKER 6.0 |59
Using MIF Statements

Applications of MIF

You can use MIF files any time you need access to a FrameMaker product’s formatting capabilities. This
section provides some examples of how MIF can be used and some tips on minimizing MIF statements.

You can use MIF to:

- Share files with earlier versions of FrameMaker

« Perform custom document processing

= Write import and export filters for FrameMaker documents

- Perform database publishing

Sharing files with earlier versions
A FrameMaker product automatically opens documents created with an earlier version of FrameMaker
(2.0 or higher).

To use an earlier version of FrameMaker (such as 2.1) to edit a document created with a later version of
FrameMaker (such as 6.0):

1 Use the newer FrameMaker product version to save the document in MIF.
2 Open the MIF file with the earlier version of FrameMaker.

Note: Earlier versions of FrameMaker do not support all MIF statements in the current version. For example,

when you use version 2.1 of FrameMaker to open a document created in version 3 of FrameMaker, MIF state-
ments describing tables and conditional text are skipped. Ignore the related error messages. For a description of
the differences between MIF 6.0 and previous versions, see “MIF Compatibility” on page 272.

Modifying documents

You can use MIF to perform custom document processing. For example, you can create a program or write
a series of text editor macros to search for and change paragraph tags in a MIF file. You can also edit a MIF
book file to easily add or change document names in a book.

For an example of using MIF to easily update the values in a table, see “Updating several values in a table”
on page 259.

Writing filters

MIF allows you to write filters to convert data from other formats to FrameMaker format and to convert a
MIF file to another document format. While FrameMaker products will change in future versions, MIF will
always remain compatible with earlier versions, so your filters can continue to write MIF files.

Import filters

MIF statements can completely describe a FrameMaker document or book file. Because documents created
with most word processors and text editors have fewer features than a FrameMaker document, your import
filters normally use only a subset of MIF statements.

ADOBE FRAMEMAKER 6.0
Using MIF Statements

To write an import filter, first determine which MIF statements describe the format of the input file. Then
write a program to translate the file from its original file format to MIF. If the imported document doesn’t
use sophisticated formatting and layout features, don’t include the corresponding MIF statements in your
filter.

For example, if the file was created by a word processor, your filter should convert document text to a single
Text FI owstatement. Ignore line and page breaks (except forced breaks) in your source document,
because the text will be repaginated by the MIF interpreter. If the document uses style sheets, convert
paragraph styles to paragraph formats in a Pgf Cat al og statement, and convert table styles to table
formats in a Thl Cat al og statement.

Output filters

You can write output filters that convert a MIF file to any format you want. While you should be familiar
with all MIF statements to determine which ones you need to translate a FrameMaker document, your
output filter doesn’t need to convert all the possible MIF statements.

In most cases, a MIF description of a FrameMaker document contains more information than you need.
Because MIF appears as a series of nested statements, your output filter must be able to scan a MIF file for
the information it needs and skip over statements that it will not use.

Installing a filter

In UNIX versions, you can set up a FrameMaker product to automatically start a script that runs a filter
based on the filename suffix. The filter can convert a file to a MIF file. The FrameMaker product then inter-
prets the MIF file, storing the results in a FrameMaker document. For more information about installing
your filter, see the online manual Customizing FrameMaker Products.

Minimizing MIF statements

The following tips may help you minimize the number of MIF statements that your filter needs to generate:

- If you are not concerned about controlling the format of a document, use the default formats that a
FrameMaker product provides for new documents. The user can always change formats as needed within
the FrameMaker document.

- If you are filtering a document from another application into a FrameMaker product and then back to
the application, you may want to import the filter’s MIF file into a FrameMaker document, save the
document as a MIF file, and then convert the file back to the original format from the MIF file generated
by the FrameMaker product. This technique takes advantage of a FrameMaker product’s syntactically
complete MIF statements, but allows your filter to write a shorter MIF file.

- If your filter needs to generate fully-formatted MIF files, you can minimize the number of formatting
statements by creating a template in a FrameMaker product, saving the template as a MIF file, and then
including the MIF template file in your filter’s generated document. You must edit the saved MIF template
(see “Including template files” on page 54). An advantage of this technique is that you can use the same
template for more than one document.

- Define macros to ease the process of generating statements. For an example of using macros, see “Text
example” on page 246.

60

ADOBE FRAMEMAKER 6.0 |61
Using MIF Statements

Database publishing

You can use MIF files to import information from an external application, such as a database, into a
FrameMaker document. This type of information transfer is often called database publishing. For example,
you can write a C program or a database script to retrieve information from a database and store that infor-
mation as a MIF file. A user can then open or import the MIF file to get a fully formatted FrameMaker
document that contains up-to-date information from the database.

There are four key elements to a typical database publishing solution:

- The database provides a system to enter, manipulate, select, and sort data. You can use any database that
can create text-based output files.

- MIF provides the data interchange format between the database and a FrameMaker product. MIF can
completely describe a document in ASCII format, including information such as text and graphics, page
layout, and indexes and cross-references.

- A FrameMaker product provides the text formatting. The FrameMaker product reads MIF files and
dynamically manages line breaks, page breaks, headers and footers, and graphics. The user can view, print,
save, or even navigate through an online document using hypertext commands.

Note: If you plan to use a FrameMaker product to view MIF files, use FrameViewer. You cannot use
FrameReader to view MIF files because FrameReader cannot read MIF.

= Optional control programs allow you to tightly integrate the database and the FrameMaker product.
Some database publishing applications are controlled entirely from the database system or through
hypertext commands embedded in a FrameMaker document. More complicated applications may require
an external control program, such as a C program that issues queries and selects a FrameMaker document
template.

Text

Final Document

CAD or Other
lllustration
Packages

MIF (ASCII text)

s [l
[IEXI

Database

ADOBE FRAMEMAKER 6.0 |62
Using MIF Statements

For an example of a database publishing application, see “Database publishing” on page 259.

Debugging MIF files

When a FrameMaker product reads a MIF file, it might detect errors such as unexpected character
sequences. In UNIX and Windows versions, a FrameMaker product displays messages in a console window.
In Macintosh and Windows versions, you must turn on Show File Translation Errors in the Preferences
dialog box to display messages in a window. If a FrameMaker product finds an error, it continues to process
the MIF file and reads as much of the document as possible.

When you are debugging MIF files, you should examine the error messages for clues. The MIF interpreter
reports line numbers for most errors. For a description of MIF error messages, see “MIF Messages” on
page 268.

In some cases, the MIF interpreter reports an “invalid opcode” message for a statement. If the statement
seems correct to you, check the statements above it. A missing right angle bracket can cause the interpreter
to parse a statement incorrectly.

If the MIF interpreter brings up an empty document when it reads your file, it has stopped trying to
interpret your file and opened an empty custom document instead. Close the document and check your
MIF file for errors. Try adding a Ver bose statement to your file to get more complete messages.

If your MIF statements are syntactically correct but cause unexpected results in the document, check for
mismatched ID numbers and check the placement of statements. Many MIF statements are position-
dependent and can cause errors if they appear in the wrong place in afile. For example, an ATbl statement
that comes before its corresponding Thl statement causes an error.

Here are some additional tips for debugging MIF files:

= Use the Ver bose statement to generate comments. To debug a specific section of a MIF file, you can
precede the section with the <Ver bose Yes> statement and end the section with the <Ver bose No>
statement.

- Make sure angle brackets are balanced.

- Make sure that MIF statement names are capitalized correctly. MIF statement names and keyword values
are case-sensitive.

- Make sure that string arguments are enclosed in straight single quotation marks. (See “MIF data items”
on page 11 for an example.)

= Make sure ID numbers are unique.

- Make sure that every table anchor has a corresponding table instance, and that every table instance has
an anchor in the text flow.

- Make sure that tag names with spaces are enclosed in straight single quotation marks.
= Make sure paired statements are balanced. For example, XRef and XRef End statements must be paired.
= Make sure that right angle bracket (>) and backslash (\) characters in text are preceded by a backslash.

- Make sure that hexadecimal characters, for example \ xe6, have a space after them.

ADOBE FRAMEMAKER 6.0
Using MIF Statements

Other application tools

The Frame Developer’s Kit (FDK) provides tools that you can use to write filters and to perform custom

document processing. The FDK includes the Application Program Interface (API), which you can use to

create a C application that can create and save documents, modify documents, and interact with the user.
The FDK also includes the Frame Development Environment (FDE), which allows you to make your FDK
clients portable to the platforms that FrameMaker supports.

MIF files can be used by C applications, text processing utilities, or UNIX shell scripts. You might want to
work directly with MIF files if you are filtering large numbers of files in batch mode. You also might want
to work with MIF files if you are doing simple document processing, such as changing a few tag names, or
if you are setting options for View Only documents.

You can use the FDK and MIF files together; for example, a database publishing application can extract
values from a database and write out the information as a table in a MIF file. An FDK client can then
automatically open the MIF file as a FrameMaker document.

Where to go from here

This chapter has given you a start at working with MIF files. You can use the information in this chapter as
guidelines for working with similar MIF statements. Once you have experimented with basic MIF files, you
can learn about other MIF statements by creating small FrameMaker documents that contain a specific
feature and saving these documents as MIF files. Because a FrameMaker product writes complete and
precise MIF code, it is your ultimate source for learning about MIF statements.

For more information about document components not described in this chapter, see the MIF statement
descriptions in “MIF Document Statements”, “MIF Book File Statements”, and “MIF Statements for
Structured Documents and Books”.

63

MIF Document Statements

This chapter describes the structure of MIF document files and the MIF statements they can contain. Most
MIF statements are listed in the order that they appear in a MIF file, as described in the following section.
If you are looking for information about a particular statement, use this manual’s statement index to locate
it. If you are looking for information about a type of object, such as a table or paragraph, use the table of
contents to locate the MIF statements that describe the object.

MIF file layout

The following table lists the main statements in a MIF document file in the order that a FrameMaker

product writes them. You must follow the same order that a FrameMaker product uses, with the exception
of the macro statements and control statements, which can appear anywhere at the top level of a file. Each
statement, except the M FFi | e statement, is optional. Most main statements use substatements to describe

objects and their properties.

Statement

Description

M FFi | e

Labels the file as a MIF document file. The M FFi | e statement is required
and must be the first statement in the file.

Control statements

Establish the default units in a Uni t s statement, the debugging setting in a
Ver bose statement, and comments in a Comrent statement. These state-
ments can appear anywhere at the top level as well as in some substate-
ments.

Macro statements

Define macros with a def i ne statement and read in files with an i ncl ude
statement. These statements can appear anywhere at the top level.

Col or Cat al og

Describes document colors. The Col or Cat al og statement contains Col or
statements that define each color and tag.

Conbi nedFont Cat al og

Describes combined fonts. The Combi nedFont Cat al og statement con-
tains Conbi nedFont Def n statements that define each combined font and
its component fonts.

Condi ti onCat al og

Describes condition tags. The Condi t i onCat al og statement contains
Condi t i on statements that define each condition tag and its properties.

El enent Def Cat al og

Defines the contents of the Element Catalog for a structured document. For
more information, see “MIF Statements for Structured Documents and
Books” on page 167.

Fmt Changeli st Cat al og

Defines the contents of the Format Change List Catalog for a structured doc-
ument. For more information, see “MIF Statements for Structured Docu-
ments and Books™ on page 167.

Pgf Cat al og

Describes paragraph formats. The Pgf Cat al og statement contains Pgf
statements that define the properties and tag for each paragraph format.

64

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Statement

Description

Font Cat al og

Describes character formats. The Font Cat al og statement contains Font
statements that define the properties and tag for each character format.

Rul i ngCat al og

Describes ruling styles for tables. The Rul i ngCat al og statement contains
Rul i ng statements that define the properties for each ruling style.

Thl Cat al og Describes table formats. The Thl Cat al og statement contains Thl For mat
statements that define the properties and tag for each table format.
Vi ews Describes color views for the document. The Vi ews statement contains

Vi ew statements that define which colors are visible in each color view.

Var i abl eFor mat s

Defines variables.The Var i abl eFor mat s statement contains
Var i abl eFor mat statements that define each variable.

Mar ker TypeCat al og

Defines a catalog of user-defined markers for the current document. The
Mar ker TypeCat al og statement contains Mar ker TypeCat al og state-
ments that specify each user-defined marker.

XRef For mat s

Defines cross-reference formats. The XRef For mat s statement contains
XRef For mat statements that define each cross-reference format.

Docunent Controls document features such as page size, margins, and column layout.
Because the MIF interpreter assumes the same page defaults as the New
command, this section is necessary only if you want to override those default
settings.

BookConponent Provides the setup information for files generated from the document.

BookConponent statements describe the filename, filename suffix, file
type, and paragraph tags or marker types to include.

I nitial Aut oNuns

Provides a starting value for the autonumber series in a document.

Dictionary

Lists allowed words in the document.

AFr anes

Describes all anchored frames in the document. The AFr anes statement
contains Fr ane statements that define the contents ID number of each
anchored frame. Later in the MIF file, where the document contents are
described, the MIF file must include an AFr ame statement that corresponds
to each Fr ane statement. The AFr ane statement identifies where a specific
anchored frame appears in a text flow; it need only supply the frame’s ID
number.

Thl s

Describes all tables in the document. The Tbl s statement contains Thl
statements that define the contents of each table and its ID number. Later in
the MIF file, where the document contents are described, the MIF file must
include ashort ATbl statement that corresponds to each Thl statement. The
ATbl statement identifies where a specific table appears in a text flow; it
need only supply the table’s ID number.

65

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Statement Description

Page Describes the layout of each page in the document. The description includes
the layout of each page, the dimensions of the text frames, and the objects
and other graphic frames on that page. A MIF file created by a FrameMaker
productincludes a Page statement for each page in the document, including
the master pages. When you write an import filter, you can omit Page state-
ments; the MIF interpreter repaginates the document as needed.

Text Fl ow Represents the actual text in the document. Within Text FI ow statements,
the text is expressed in paragraphs which in turn contain paragraph lines. Line
endings of Par aLi ne statements are not significant because the MIF inter-
preter wraps the contents of Par aLi ne statements into paragraphs.

MIFFile statement

The M FFi | e statement identifies the file as a MIF file. The M FFi | e statement is required and must be
the first line of the file with no leading white space.

Syntax

<M FFi | e version> #comment (Required) Identifies a MIF file

The ver si on argument indicates the version number of the MIF language used in the file, and conment
shows the name and version number of the program that generated the file. For example, a MIF file saved
in version 6.0 of FrameMaker begins with the following line:

<M FFil e 6.00> # Generated by FraneMaker 6.0

MIF is compatible across versions, so a MIF interpreter can parse any MIF file. The results may sometimes
differ from your intentions if a MIF file describes features that are not included in the FrameMaker product
that reads the MIF file. For more information, see “MIF Compatibility” on page 272.

Control statements
Control statements set defaults, provide debugging information, and insert comments.

Units statement

The Uni t s statement specifies the default units for dimensions and coordinates in the document. It can
appear anywhere at the top level or within any statement.

66

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Syntax

<Units keyword> Default units for document

keywor d can be one of:
Uin

Ucm

Umm

Upi ca

Upt

udd

Ucc

Usage

If no Uni t s statement is provided, the default value is Ui n. A Uni t s statement remains in effect until
another Uni t s statement is encountered. When a FrameMaker product writes a MIF file, it uses the
document’s current display units.

CharUnits statement

The Char Uni t s statement specifies the default units for measuring font size and line spacing. This is to
accommodate the Japanese “Q” units of measurement. This statement can appear anywhere at the top level
or within any statement.

Syntax

<Char Uni ts keyword> Default units for font size and line spacing

keywor d can be one of:
CUpt
aQ

Verbose statement

The Ver bose statement turns on a debugging mode for MIF. It can appear anywhere at the top level or
within any statement.

Syntax

<Ver bose bool ean> Yes turns on debugging information

Usage

When Verbose mode is on, the MIF interpreter writes detailed stream of processing descriptions to a
window. In UNIX versions of FrameMaker products, these descriptions appear in the window from which
the FrameMaker product was started. To display messages in Windows and Macintosh versions, you must
turn on Show File Translation Errors in the FrameMaker product’s Preferences dialog box. The messages
appear in a console window in Windows and in an Error Log window on the Macintosh. The processing
descriptions can be quite long, but may be essential for debugging a program that creates MIF for input to

67

ADOBE FRAMEMAKER 6.0 |68
MIF Document Statements

a FrameMaker product. A Ver bose statement can occur unnested or within markup statements, as
explained later in this chapter. A Ver bose statement remains in effect until the interpreter encounters
another Ver bose statement that changes the setting.

Comment statement
The Comment statement identifies an optional comment.

Syntax

<Comment comment -t ext > Identifies a comment

Usage

Comments can appear within Conment statements, or they can follow a number sign (#). When it
encounters a number sign, the MIF interpreter ignores all text until the end of the line, including angle
brackets.

Because Comment statements can be nested within one another, the MIF interpreter examines all
characters following an angle bracket until it finds the corresponding angle bracket that ends the comment.
<Comment - The followi ng statenents define the paragraph formats>

<Comment <These statenments have been renoved: <Font <FBol d> <Fltalic>>>>

The MIF interpreter processes number signs within Commrent statements as normal comments, ignoring
the remainder of the line.

<Comment - Wen a nunber sign appears within a <Conment > st at enent,

the MF interpreter ignores the rest of the characters in that

line--including angle brackets < >.>

End of <Comment > St atenent.

Macro statements

MIF has two statements that allow you to define macros and include information from other files.
Although these statements usually appear near the beginning of a MIF file, you need not put them in that
position. However, the MIF interpreter does not interpret a macro that occurs before its definition.

define statement

The def i ne statement creates a macro. When the MIF interpreter reads a MIF file, it replaces the macro
name with its replacement text. A def i ne statement can appear anywhere in a MIF file; however, the
macro definition must appear before any occurrences of the macro name.

Syntax

define (nane, replacenent) Creates a macro

ADOBE FRAMEMAKER 6.0 |69
MIF Document Statements

Usage

Once a macro has been defined, you can use the macro name anywhere that the replacement text is valid.
For example, suppose you define the following macro:

define (Bold, <Font <FWeight "“Bold' >>)

When you use the macro in MIF statements, write <Bol d>. The interpreter replaces <Bol d> with <Font
<FWei ght " Bol d' >>. Note that it retains the outer angle brackets in the replacement text.

Note that when you use a macro in a MIF file, you must enclose macro names in brackets to comply with
the MIF syntax (for example, write <Bol d> instead of Bol d). The MIF parser requires these brackets to
interpret the macro correctly.

include statement

Thei ncl ude statement reads information from other files. It is similar to an #i ncl ude statementinaC
program. When the MIF interpreter reads a MIF file, it replaces the i ncl ude statement with the contents
of the included file. Ani ncl ude statement can appear anywhere in a MIF file. However, make sure that

the contents of the included file appear in a valid location when they are read into the MIF file.

Syntax

i ncl ude (pathnane) Reads in a file

Usage

The pat hname argument specifies a UNIX-style pathname, which uses a slash (/) to separate directory
names (for example, / usr/ doc/ t enpl at e. mi f). For the Macintosh and Windows versions of
FrameMaker products, use the following guidelines for specifying absolute pathnames:

= For Macintosh versions, start an absolute pathname with a slash and the volume name. For example, to
include the file MyFi | e from the volume MacVol une, specify the pathname / MacVol ume/ MyFi | e.

= For Windows versions, start an absolute pathname with the drive name. For example, to include the file
nyfil e. doc from the directory mydi r onthec: drive, specify the pathname c: / mydi r/ myfil e. doc.
Don't start an absolute path with a slash (/).

If you specify a relative pathname, the MIF interpreter searches for the file to include in the directory or
folder that contains the file being interpreted. In UNIX versions of a FrameMaker product, the MIF inter-
preter also searches the $FMHOVE/ f i ni t and the $SFMHOVE/ f i ni t/ fi | t er s directories for afile with
a relative pathname.

In general, you would use ani ncl ude statement to read a header file containing def i ne statements that
afilter needs to translate afile. Isolate the data in a header file to simplify the process of changing important
mappings. You can also use an i ncl ude statement to read in a template file containing formatting infor-
mation. Your application can then simply generate a document’s text. For more information, see
“Including template files” on page 54.

ADOBE FRAMEMAKER 6.0 | 70
MIF Document Statements

Conditional text

FrameMaker documents can contain conditional text. In a MIF file, the condition tags are defined by a
Condi t i on statement, which specifies whether the condition tag is hidden or shown. The condition tags
for adocument are stored in a Condi t i onCat al og statement.

Within the text flow, Condi t i onal and Uncondi ti onal statements show where conditional text begins
and ends.

ConditionCatalog statement

The Condi ti onCat al og statement defines the contents of the Condition Catalog. A MIF file can have
only one Condi t i onCat al og statement, which must appear at the top level in the order given in “MIF
file layout” on page 64.

Syntax

<Condi ti onCat al og
<Condi tion..> Defines a condition tag (see “Condition statement,” next)
<Condi tion..> Additional statements as needed

> End of Condi ti onCat al og statement

Condition statement

The Condi ti on statement defines the state of a condition tag and its condition indicators, which control
how conditional text is displayed in the document window. The statement must appear in a Condi t i on-
Cat al og statement. The property statements can appear in any order.

Syntax
<Condi tion
<CTag string> Condition tag string
<CSt at e keywor d> Whether text with this tag is shown or hidden

keywor d can be one of:
CHi dden
CShown

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<CStyl e keyword>

Format of text with this condition

keywor d can be one of:
CAsl s

CUnderl i ne

CDoubl eUnder | i ne
CStrike

COverline
CChangeBar

<CCol or tagstring>

Color for condition tag (see “ColorCatalog statement” on page 94)

<CSepar ati on integer>

Color for condition tag; no longer used, but written out by FrameMaker
products for backward-compatibility (see “Color statements™ on page 280)

End of Condi t i on statement

Conditional and Unconditional statements

The Condi t i onal statement marks the beginning of conditional text and the Uncondi t i onal statement
marks the end. These statements must appear in a Rowor Par aLi ne statement.

Syntax

<Condi ti onal

Begin conditional text

<InCondition tagstring>

Specifies condition tag from Condition Catalog

<InCondition tagstring>

Additional statements as needed

>

End of Condi ti onal statement

<Uncondi ti onal >

Returns to unconditional state

Paragraph formats

A paragraph format is defined in a Pgf statement. Paragraph formats can be defined locally or stored in
the Paragraph Catalog, which is defined by a Pgf Cat al og statement.

PgfCatalog statement

The Pgf Cat al og statement defines the contents of the Paragraph Catalog. A MIF file can have only one
Pgf Cat al og statement, which must appear at the top level in the order given in “MIF file layout” on

page 64.

Syntax

<Pgf Cat al og

71

ADOBE FRAMEMAKER 6.0 | 72
MIF Document Statements

<Pgf ..> Defines a paragraph format (see “Pgf statement™ on page 72)
<Pgf ..> Additional statements as needed

> End of Pgf Cat al og statement

Usage

If you don’t include a Pgf Cat al og statement, the MIF interpreter uses the paragraph formats defined in
NewTenpl at e. (For information on defaults specified in templates, see page 9.) If you include

Pgf Cat al og, paragraph formats in the MIF file replace default formats. The MIF interpreter does not add
your paragraph format to the default Paragraph Catalog, although it provides default values for unspec-

ified properties in a paragraph format (see “Creating and applying paragraph formats” on page 19).

Pgf statement

The Pgf statement defines a paragraph format. Pgf statements can appear in many statements; the
statement descriptions show where Pgf can be used.

The Pgf statement contains substatements that set the properties of a paragraph format. Most of these
properties correspond to those in the Paragraph Designer. Properties can appear in any order within a Pgf
statement, with the following exception: the Pgf Nunirabs statement must appear before any TabSt op
statements.

Syntax
Basic properties
<Pgf Begin paragraph format
<Pgf Tag tagstring> Paragraph tag name
<Pgf UseNext Tag bool ean> Turns on following paragraph tag feature
<Pgf Next Tag tagstring> Tag name of following paragraph
<Pgf FI ndent di nensi on> First line left margin, measured from left side of current text
column
<Pgf Fl ndent Rel ati ve bool ean> Used for structured documents only
<Pgf FI ndent Of f set di nensi on> Used for structured documents only
<Pgf LI ndent di nensi on> Left margin, measured from left side of current text column
<Pgf Rl ndent di nensi on> Right margin, measured from right side of current text col-
umn

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Pgf Al i gnment keywor d>

Alignment within the text column

keywor d can be one of:
Left Ri ght

Left

Cent er

Ri ght

<Pgf SpBef or e di nensi on>

Space above paragraph

<Pgf SpAfter di nension>

Space below paragraph

<Pgf Li neSpaci ng keywor d>

Amount of space between lines in paragraph measured from
baseline to baseline

keywor d can be one of:
Fi xed (default font size)
Proporti onal (largest fontin line)

<Pgf Leadi ng di mensi on>

Space below each line in a paragraph

<Pgf NuniTabs i nteger>

Number of tabs in a paragraph

The statement is not required for input files; the MIF inter-
preter calculates the number of tabs. If it does appear, it must
appear before any TabSt op statements; otherwise, the MIF
interpreter ignores the tab settings.

<TabSt op

Begin definition of tab stop; the following property state-
ments can appear in any order, but must appear within a
TabSt op statement

<TSX di nensi on>

Horizontal position of tab stop

<TSType keyword>

Tab stop alignment

keywor d can be one of:
Left

Cent er

Ri ght

Deci nal

<TSLeader Str string>

Tab stop leader string (for example, . ')

<TSDeci mal Char i nteger>

Align decimal tab around a character by ASCII value; in UNIX
versions, type man asci i in a UNIX window for a list of
characters and their corresponding ASCII values

>

End of TabSt op statement

<TabSt op..>

Additional statements as needed

Default font properties

<Pgf Font ..>

Default font (see page 77)

73

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Pagination properties

<Pgf Pl acenment keyword>

Vertical placement of paragraph in text column

keywor d can be one of:
Anywher e

Col umTop

PageTop

LPageTop

RPageTop

<Pgf Pl acenment Styl e keywor d>

Placement of side heads, run-in heads, and paragraphs that
straddle text columns

keywor d can be one of:

Nor mal

Runl n

Si deheadTop

Si deheadFi r st Basel i ne
Si deheadLast Basel i ne
Straddl e

St raddl eNor mal Onl y

See page 76

<Pgf Runl nDef aul t Punct string>

Default punctuation for run-in heads

<Pgf Wt hPrev bool ean>

Yes keeps paragraph with previous paragraph

<Pgf W t hNext bool ean>

Yes keeps paragraph with next paragraph

<Pgf Bl ockSi ze i nt eger>

Widow/orphan lines

Numbering properties

<Pgf Aut oNum bool ean>

Yes turns on autonumbering

<Pgf NumFor mat string>

Autonumber formatting string

<Pgf Number Font tagstring>

Tag from Character Catalog

<Pgf NumAt End bool ean>

Yes places number at end of line, instead of beginning

Advanced properties

<Pgf Hyphenat e bool ean>

Yes turns on automatic hyphenation

<HyphenMaxLi nes i nt eger>

Maximum number of consecutive lines that can end in a
hyphen

<HyphenM nPrefi x integer>

Minimum number of letters that must precede hyphen

<HyphenM nSuf fi x i nteger>

Minimum number of letters that must follow a hyphen

<HyphenM nWord i nt eger>

Minimum length of a hyphenated word

<Pgf Let t er Space bool ean>

Spread characters to fill line

74

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Pgf M nWor dSpace i nt eger >

Minimum word spacing (as a percentage of a standard space
in the paragraph’s default font)

<Pgf Opt Wr dSpace i nt eger >

Optimum word spacing (as a percentage of a standard space
in the paragraph’s default font)

<Pgf MaxWor dSpace i nt eger >

Maximum word spacing (as a percentage of a standard space
in the paragraph’s default font)

<Pgf Language keyword>

Language to use for spelling and hyphenation. Note that
FrameMaker products write this statement so MIF files can be
opened in older versions of FrameMaker. However, the lan-
guage for a paragraph format or character format is now
properly specified in the Pgf Font and Font statements (see
page 77)

keywor d can be one of:
NoLanguage

USEngl i sh

UKEngl i sh

Ger man

Swi ssGer nan
French

Canadi anFr ench
Spani sh

Cat al an

Italian

Por t uguese
Brazilian

Dani sh

Dut ch

Nor wegi an

Nynor sk

Fi nni sh

Swedi sh

Japanese

Tradi tional Chi nese
Si npl i fi edChi nese
Kor ean

<Pgf TopSepar at or string>

Name of reference frame (from reference page) to put above
paragraph

<Pgf TopSepAt | ndent bool ean>

Used for structured documents only

<Pgf TopSepOf f set di mensi on>

Used for structured documents only

<Pgf Bot Separator string>

Name of reference frame (from reference page) to put below
paragraph

<Pgf Bot SepAt | ndent bool ean>

Used for structured documents only

<Pgf Bot SepOf f set di nensi on>

Used for structured documents only

75

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Table cell properties

<Pgf Cel | Al'i gnment keywor d> Vertical alignment for first paragraph in a cell

keywor d can be one of:

Top
M ddl e
Bott om
<PgfCel | Margins L T R B> Cell margins for first paragraph in a cell
<Pgf Cel | LMar gi nFi xed bool ean> Yes means left cell margin is added to Tbl Cel | Mar gi ns;

No means left cell margin overrides Thl Cel | Mar gi ns

<Pgf Cel | TMar gi nFi xed bool ean> Yes means top cell margin is added to Tbl Cel | Mar gi ns;
No means top cell margin overrides Tbl Cel | Mar gi ns

<Pgf Cel | Rvar gi nFi xed bool ean> Yes means right cell margin is added to Tbl Cel | Mar gi ns;
No means right cell margin overrides Tbl Cel | Mar gi ns

<Pgf Cel | BMar gi nFi xed bool ean> Yes means bottom cell margin is added to Thl Cel | Mar -
gi ns; No means width of bottom cell margin overrides Thl -
Cel | Mar gi ns

Miscellaneous properties

<Pgf Locked bool ean> Yes means the paragraph is part of a text inset that obtains
its formatting properties from the source document. See
page 77

<Pgf Acr obat Level integer> Level at which the paragraph is shown in an outline of Acro-

bat Bookmarks; O indicates that the paragraph does not
appear as a bookmark

Usage

Within a Pgf Cat al og statement, the Pgf Tag statement assigns a tag to a paragraph format. To apply a
paragraph format from the Paragraph Catalog to the current paragraph, use the Pgf Tag statement in a
Par aLi ne statement.

If the Pgf Tag statement within a text flow does not match a format in the Paragraph Catalog, then the Pgf
statement makes changes to the current paragraph format. That is, a Pgf statement after Pgf Tag specifies
how the paragraph differs from the format in the catalog.

If a document has side heads, indents and tabs are measured from the text column, not the side head. Ina
table cell, tab and indent settings are measured from the cell margins, not the cell edges.

Usage of some aspects of the Pgf statement is described in the following sections.

Paragraph placement across text columns and side heads

The Pgf Pl acenent St yl e statement specifies the placement of a paragraph across text columns and side
heads in a text frame:

- If a paragraph spans across all columns and side heads, the Pgf Pl acenment St yl e statement is set to
Straddl e.

76

ADOBE FRAMEMAKER 6.0 | 77
MIF Document Statements

- If a paragraph spans across all columns, but not across the side heads in a text frame, the Pgf Pl ace-
ment St yl e statement is set to St r addl eNor mal .

Locked paragraphs and text insets
The Pgf Locked statement does not correspond to any setting in the Paragraph Designer. The statement
is used for text insets that retain formatting information from the source document.

If the <Pgf Locked Yes> statement appears in a specific paragraph, that paragraph is part of a text inset
that retains formatting information from the source document. The paragraph is not affected by global
formatting performed on the document.

If the <Pgf Locked No> statement appears in a specific paragraph, that paragraph is not part of a text
inset, or is part of a text inset that reads formatting information from the current document. The
paragraph is affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 148.

Character formats

A character format is defined by a Pgf Font or a Font statement. Character formats can be defined locally
or they can be stored in the Character Catalog, which is defined by a Font Cat al og statement.

FontCatalog statement

The Font Cat al og statement defines the contents of the Character Catalog. A document can have only
one Font Cat al og statement, which must appear at the top level in the order given in “MIF file layout” on
page 64.

Syntax

<Font Cat al og
 Defines a character format (see “PgfFont and Font statements,” next)
 Additional statements as needed

> End of Font Cat al og statement

PgfFont and Font statements
The Pgf Font and Font statements both define character formats. The Pgf Font statement must appear
inaPgf statement. The Font statement must appear in a Font Cat al og, Par a, or Text Li ne statement.

New statements have been added to the PgfFont and Font statements to express combined fonts in
FrameMaker documents. For more information, see “Combined Fonts” on page 227.

Syntax

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Pgf Font | Font

<FTag tagstring>

Character format tag name

Font name

<FFanmily string>

Name of font family

<FAngl e string>

Name of angle, such as Obl i que

<FWei ght string>

Name of weight, such as Bol d

<FVar string>

Name of variation, such as Nar r ow

<FPost Scri pt Name string>

Name of font when sent to PostScript printer (see “Font name” on

page 81)

<FPI at f or mNan®e string>

Platform-specific font name, only read by Macintosh and Windows

versions (see page 82)

Font language

<FLanguage keywor d>

Language to use for spelling and hyphenation

keywor d can be one of:
NoLanguage

USEngl i sh

UKEngl i sh

Cer man

Swi ssGer man
French

Canadi anFr ench
Spani sh

Cat al an

Italian

Por t uguese
Brazilian

Dani sh

Dut ch

Nor wegi an

Nynor sk

Fi nni sh

Swedi sh

Japanese

Tr adi ti onal Chi nese
Si npl i fi edChi nese
Kor ean

78

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Font encoding

<FEncodi ng keywor d>

Specifies the encoding for this font. This is to specify the encoding
for a double-byte font. If not present, the default is Roman.

keywor d can be one of:
Fr ameRoman

J1 SX0208. shi ftJI'S
Bl Gb

GB2312-80. EUC
KSC5601- 1992

Font size, color, and width

<FSi ze di nensi on>

Size, in points only (or in Q on a Japanese system)

<FCol or tagstring>

Font color (see “ColorCatalog statement” on page 94)

<FSepar ati on integer>

Font color; no longer used, but written out by FrameMaker prod-
ucts for backward-compatibility (see ““Color statements™ on
page 280)

<FStretch percent>

The amount to stretch or compress the font, where 100% means
no change

Font style

<FUnder | i ni ng keyword>

Turns on underlining and specifies underlining style

keywor d can be one of:
FNoUnder |'i ni ng

FSi ngl e

FDoubl e

FNurer i c

<FOverl i ne bool ean>

Turns on overline style

<FStri ke bool ean>

Turns on strikethrough style

<FChangeBar bool ean>

Turns on the change bar

<FPosi tion keyword>

Specifies subscript and superscript characters; font size and posi-
tion relative to baseline determined by Docunent substatements
(see page 105)

keywor d can be one of:
FNor mal

FSuper scri pt
FSubscri pt

<FCQutline bool ean>

Turns on outline style (Macintosh version only)

<FShadow bool ean>

Turns on shadow style (Macintosh version only

<FPai r Ker n bool ean>

Turns on pair kerning

79

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<FCase keyword>

Applies capitalization style to string

keywor d can be one of:
FAsTyped

FSmal | Caps

FLower case

FUpper case

Kerning information

<FDX percent >

Horizontal kern value for manual kerning expressed as percentage
of an em; positive value moves characters right and negative value
moves characters left

<FDY percent >

Vertical kern value for manual kerning expressed as percentage of
an em; positive value moves characters down and negative value
moves characters up

<FDW per cent >

Spread value for space between characters expressed as percent-
age of an em; positive value increases the space and negative value
decreases the space

<FTsune bool ean>

Yes turns on Tsume (variable width rendering) for Asian characters

Filter statements

<FPl ai n bool ean>

Used only by filters

<FBol d bool ean>

Used only by filters

<Fltalic bool ean>

Used only by filters

Miscellaneous information

<FLocked bool ean>

Yes means the font is part of a text inset that obtains its formatting
properties from the source document

End of Pgf Font or Font statement

Usage

Use Pgf Font within a Pgf statement to override the default font for the paragraph. Use Font within a
Font Cat al og statement to define a font or in a Par a statement to override the default character format.
Substatements in the Font and Pgf Font statements are optional. Like the Pgf substatements, Font

substatements reset the current font.

When the MIF interpreter reads a Font statement, it continues using the character format properties until
it either reads another Font statement or reads the end of the Par a statement. You can set the character
format back to its previous state by providing an empty FTag statement. A Font statement that does not
supply all property substatements inherits the current font state for those properties not supplied.

For more information about creating and applying character formats in a MIF file, see “Creating and
applying character formats” on page 29. For more information about character formats in general, see

your user’s manual.

Usage of some aspects of the Pgf Font and Font statements is described in the following sections.

80

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Locked fonts and text insets

The FLocked statement does not correspond to any setting in the Character Designer. The statement is
used for text insets that retain formatting information from the source document.

Ifthe <FLocked Yes> statement appears in a specific character format, that character format is part of a
text inset that retains formatting information from the source document. The character format is not
affected by global formatting performed on the document.

If the <FLocked No> statement appears in a specific character format, either that character format is not
part of a text inset, or that character format is part of a text inset that reads formatting information from
the current document. The character format is affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 148.

Font name

When a Pgf Font or Font statement includes all of the family, angle, weight, and variation properties, a
FrameMaker product identifies the font in one or more of the following ways:

= The statement FPI at f or niNane specifies a font name that uniquely identifies the font on a specific
platform.

« The statements FFani | y, FAngl e, FWei ght , and Fvar specify how a FrameMaker product stores font
information internally.

« The statement FPost Scr i pt Name specifies the name given to a font when it is sent to a PostScript
printer (specifically, the name that would be passed to the PostScript Fi ndFont operator before any font
coordination operations). The PostScript name is unique for all PostScript fonts, but may not be available
for fonts that have no PostScript version.

For complete font specifications, a FrameMaker product always writes the FFani | y, FAngl e, FWéi ght ,
FVar, and FPost Scr i pt Name statements. In addition, Macintosh and Windows versions of a
FrameMaker product also write the FPI at f or niName statement. A UNIX version of a FrameMaker
product ignores FPI at f or mNane.

When a FrameMaker product reads a MIF file that includes more than one way of identifying a font, it
checks the font name in the following order:

1 Platform name
2 Combination of family, angle, weight, and variation properties
3 PostScript name

If you are writing filters to generate MIF, you do not need to use all three methods. You should always
specify the PostScript name, if it is available. You should use the platform name only if your filter will be
run on aspecific platform. A filter running on a specific platform can easily find and write out the platform
name, but the name cannot be used on other platforms.

Font encoding

The <FEncodi ng> statement specifies which encoding to use for a font. The default is Roman, or standard
7-bit encoding. If this statement is not included for a font, 7-bit encoding is assumed.

81

ADOBE FRAMEMAKER 6.0
MIF Document Statements

This statement takes precedence over all other font attributes. For example, if the document includes a font
with <FEncodi ng " JI SX0208. Shi ftJI S’ >, but that font family is not available on the user’s system,
then the text will appear in some other font on the system that uses Japanese encoding. If there is no
Japanese encoded font on the system, the text appears in Roman encoding and the user will see garbled
characters.

FPlatformName statement

The <FPI at f or mNanme st ri ng> statement provides a platform-specific ASCII string name that uniquely

identifies a font for a particular platform. The st ri ng value consists of several fields separated by a period.

Macintosh: The Macintosh platform name has the following syntax:

<FPI at f or Nanme M Font Nane. Styl eFl ags>

M Platform designator

Font Name Macintosh Resource Manager font name (for more information, see your Macintosh
documentation)

Styl eFl ags Macintosh font styles; use one or more of the following flags:

Bold)

B(

I (

C (Condensed)
E (Extended)

P (Plain, use if no other flags are set)

You cannot use the C and E flags for the same font. For Underline, Outline, and
Shadow styles, use the MIF statements FUnder | i ni ng, FQut | i ne, and FShadow
(described on page 79 and page 79).

The following statements are valid representations of the Macintosh font Helvetica Narrow Bold Oblique:
<FPl| at f or mMName M Hel veti ca. Bl &

<FPl at f ormName M B Hel vetica Bol d. | C

<FPl at f ornName M NI Hel veti ca Narrow Cblique. B>

<FPl| at f ormName M NBI Hel vetica Narrow Bol dObl . P>

Windows: The Windows platform name has the following syntax:

<FPI at f or Nane W FaceNane. | talicFl ag. Wi ght. Vari ation>

W Platform designator
FaceName Windows face name (for more information, see your Windows documentation)
ItalicFlag Whether font is italic; use one of the following flags:
| (Italic)
R (Regular)
\\éi ght Weight classification, for example 400 (regular) or 700 (bold)

Variation Optional variation, for example Nar r ow

82

ADOBE FRAMEMAKER 6.0
MIF Document Statements

The following statements are valid representations of the Windows font Helvetica Narrow Bold Oblique:

<FPl at f or mMName W Hel veti ca- Narrow. | . 700>
<FPl at f or mMName W Hel vetica. . 700. Narr ow>

Tables

Table formats are defined by a Thl For mat statement. Table formats can be locally defined or they can be
stored in a Table Catalog, which is defined by a Thl Cat al og statement. The ruling styles used in a table
are defined ina Rul i ngCat al og statement.

In a MIF file, all document tables are contained in one Tbl s statement. Each table instance is contained in
aThl statement. The ATbl statement specifies where each table instance appears in the text flow.

TblCatalog statement

The Thl Cat al og statement defines the Table Catalog. A document can have only one Thl Cat al og
statement, which must appear at the top level in the order given in “MIF file layout” on page 64.

Syntax

<Tbl Cat al og
<Tbl For mat ..> Defines a table format (see “TblFormat statement,” next)
<Tbl For mat ..> Additional statements as needed

> End of Tbl Cat al og statement

TblFormat statement

The Thl For nat statement defines the format of a table. A Tbl For nat statement must appear in a
Tbl Cat al og orinaTbl statement. A Thl For nat statement contains property substatements that define
a table’s properties. Table property statements can appear in any order.

Syntax

Basic properties

<Tbl For mat
<Tbl Tag tagstring> Table format tag name
<Tbl LI ndent di nensi on> Left indent for the table relative to the table’s containing text
column; has no effect on right-aligned tables
<Tbl Rl ndent di nensi on> Right indent for the table relative to the table’s containing text

column; has no effect on left-aligned tables

<Tbl SpBef or e di nensi on> Space above table

83

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Tbl SpAfter dinension>

Space below table

<Tbl Al i gnment keywor d>

Horizontal alignment within text column or text frame

keywor d can be one of:
Left

Cent er

Ri ght

I nsi de

Qut si de

See page 87

<Tbl Pl acenent keyword>

Vertical placement of table within text column

keywor d can be one of:
Anywher e

Fl oat

Col uimTop

PageTop

LPageTop

RPageTop

<Tbl Bl ockSi ze i nt eger>

Widow/orphan rows for body rows

<Tbl Cel | Margins L T R B>

Left, top, right, bottom default cell margins

<Tbl Titl ePl acenent keyword>

Table title placement

keywor d can be one of:
| nHeader

| nFoot er

None

<Tbl Titl ePgf 1

Paragraph format of title for a new table created with the table
format

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf ..>

Overrides Paragraph Catalog format as needed (see page 72)

>

End of Tbl Ti t | ePgf 1 statement

<Tbl Titl eGap dinensi on>

Gap between title and top or bottom row

<Tbl NumBy Col umm bool ean>

Autonumber paragraphs in cells; Yes numbers down each col-
umn and No numbers across each row

Ruling properties

<Tbl Col ummRul i ng tagstring>

Ruling style for most columns; value must match a ruling style
name specified in the Rul i ngCat al og statement

<Tbl XCol utmNum i nt eger >

Number of column with a right side that uses the Thl XCol -
umRul i ng statement

<Tbl XCol umRul i ng tagstring>

Ruling style for the right side of column Thl XCol urmNum

<Tbl BodyRowRul i ng tagstring>

Default ruling style for most body rows

84

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Tbl XRowRul i ng tagstring>

Exception ruling style for every nt h body row

<Tbl Rul i ngPeri od i nteger>

Number of body rows after which Thl XRowRul i ng should
appear

<Tbl HFRowRul i ng tagstring>

Ruling style between rows in the heading and footing

<Tbl Separ at or Rul i ng tagstring>

Ruling style for rule between the last heading row and first
body row, and also between the last body row and the first
footing row

<Tbl LRul i ng tagstring>

Left outside table ruling style

<Tbl BRul i ng tagstring>

Bottom outside table ruling style

<Tbl RRul i ng tagstring>

Right outside table ruling style

<Tbl TRul i ng tagstring>

Top outside table ruling style

<Tbl Last BRul i ng bool ean>

Yes means draw bottom rule on the last sheet only; No means
draw rule on the bottom of every sheet

Shading properties

<Tbl HFFi I | integer>

Default fill pattern for table heading and footing (see
page 121)

<Tbl HFCol or tagstring>

Default color for table heading and footing (see page 94)

<Tbl HFSepar at i on integer>

Default color for table heading and footing; no longer used,
but written out by FrameMaker products for backward-com-
patibility (see “Color statements™ on page 280)

<Tbl BodyFi |l integer>

Default fill pattern for body cells (see page 121)

<Tbl BodyCol or tagstring>

Default color for body cells (see page 94)

<Tbl BodySepar ati on integer>

Default color for body cells; no longer used, but written out by
FrameMaker products for backward-compatibility (see “Color
statements” on page 280)

<Tbl ShadeByCol utm bool ean>

Yes specifies column shading; No specifies body row shading

<Tbl ShadePeri od i nt eger >

Number of consecutive columns/rows that use Tbl BodyFi | |

<Tbl XFi Il integer>

Exception fill pattern for columns or body rows (see page 121)

<Tbl XCol or tagstring>

Exception color for columns or body rows (see page 94)

<Tbl XSepar ati on i nteger>

Exception color for columns or body rows; no longer used, but
written out by FrameMaker products for backward-compatibil-
ity (see “Color statements™ on page 280)

<Tbl Al t ShadePeri od i nteger>

Number of consecutive columns/rows that use Thl XFi | | ;
exception columns/rows alternate with default body col-
umns/rows to form a repeating pattern

Column properties

85

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Tbl W dt h di mensi on>

Not generated by a FrameMaker product, but can be used by
filters to determine table width

<Tbl Col um

Each table must have at least one Thl Col umm statement; a
column without a statement uses the format of the rightmost
column

<Tbl Col utmNum i nt eger >

Column number; columns are numbered from left to right
starting at O

<Tbl Col umW dt h di mensi on>

Width of column. See page 92

<Tbl Col umW dt hP i nt eger >

Not generated by a FrameMaker product, but a temporary col-
umn width when filtering proportionally-spaced tables from
another application; converted to a fixed width when read in
(see page 92)

<Tbl Col umW dt hA W W

Not generated by a FrameMaker product, but a width based
on a cell width, for filters only; converted into a fixed width
when read in. First value is minimum width; second value is
maximum width. Values limit the range of a computed column
width, and are usually set to a wide range (see page 92).

<Tbl Col utmH

Default paragraph format for the column’s heading cells in
new tables

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf ...>

Overrides Paragraph Catalog format as needed (see page 72)

>

End of Thl Col ummH statement

<Tbl Col unmBody

Default paragraph format for the column’s body cells in new
tables

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf ...> Overrides Paragraph Catalog format as needed (see page 72)
> End of Tbl Col unmBody statement
<Tbl Col ummF Default paragraph format for the column’s footing cells in new

tables

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf ...>

Overrides Paragraph Catalog format as needed (see page 72)

>

End of Tbl Col ummF statement

>

End of Tbl Col umm statement

<Tbl Col um..>

More Thl Col umm statements as needed, one per column

New table properties

<Tbl I ni t NunCol ums i nt eger >

Number of columns for new table

86

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Tbl I ni t NumHRows i nt eger > Number of heading rows for new table
<Tbl I ni t NumBodyRows i nt eger > Number of body rows for new tables
<Tbl I ni t NunFRows i nt eger > Number of footing rows for new tables

Miscellaneous properties

<Tbl Locked bool ean> Yes means the table is part of a text inset that obtains its for-
matting properties from the source document

> End of Thl For nat statement

Usage

The basic properties, ruling properties, and shading properties correspond to settings in the Table
Designer. The t agst ri ng value specified in any ruling substatement (such as Tbl Col uimRul i ng) must
match a ruling tag defined in the Rul i ngCat al og statement (see page 93). The t agst ri ng value specified
inany color substatement (such as Thl BodyCol or) must match a color tag defined in the Col or Cat al og
statement (see page 94).

Usage of some of the aspects of the Thl For mat statement is described in the following sections.

Alignment of tables

The horizontal alignment of a table within a text column or text frame is specified by the Thl Al i gnnent
statement:

- Ifthe table is aligned with the left, center, or right side of a text column or text frame, the Thl Al i gnment
statement is set to Lef t , Cent er, or Ri ght, respectively.

- If the table is aligned with the closer edge or farther edge of a text frame (closer or farther relative to the
binding of the book), the Thl Al i gnment statement is set to | nsi de or Qut si de, respectively.

Locked tables and text insets
The Tbl Locked statement does not correspond to any setting in the Table Designer. The statement is for
text insets that retain formatting information from the source document.

Ifthe <Tbl Locked Yes> statement appears in a specific table, that table is part of a text inset that retains
formatting information from the source document. The table is not affected by global formatting
performed on the document.

Ifthe <Thl Locked No> statement appears in a specific table, that table is not part of a text inset or is part
of atext inset that reads formatting information from the current document. The table is affected by global
formatting performed on the document.

For details about text insets, see “Text insets (text imported by reference)” on page 148.

Tbls statement

The Tbl s statement lists the contents of each table in the document. A document can have only one Tbl s
statement, which must appear at the top level in the order given in “MIF file layout” on page 64.

87

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Syntax

<Thl s Beginning of tables list
<Thl ..> Defines a table instance (see “Thl statement,” next)
<Thl ..> Additional statements as needed

> End of Tbl s statement

Tbl statement

The Thl statement contains the contents of a table instance. It must appear in a Tbl s statement.

Each Tbl statement is tied to a location in a text flow by the ID number in a Thl | Dstatement. Each Thl

statement has an associated ATbl statementwithin a Par aLi ne statement that inserts the table in the flow.
The Thl statement must appear before the ATbl statement that refers to it. Each Tbl statement can have
only one associated ATbl statement, and vice versa. For more information about the ATbl statement, see

“ParaLine statement” on page 142.

Syntax

<Tbl

<Tbl I D | D>

Table ID number

<Tbl Tag tagstring>

Applies format from Table Catalog

<Tbl For mat ..>

Overrides Table Catalog format as needed (see page 83)

Table columns

<Tbl NunmCol utms i nt eger >

Number of columns in the table

<Tbl Col utmW dt h di mensi on>

Width of first column

<Tbl Col utmW dt h di mensi on>

Width of second column

Width of remaining columns as needed

<Equal i zeW dt hs

Makes specified columns the same width as the widest column
(for filters only, see page 92)

<Tbl Col unnNum i nt eger >

First column

<Tbl Col unnNum i nt eger >

More columns as needed

> End of Equal i zeW dt hs statement
Table title
<TblTitle Begin definition of table title

<Tbl Ti t | eCont ent

Table title’s content, represented in one or more Par a statements

88

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Not es..> Footnotes for table title (see page 140)
<Para..> Title text (see page 141)
<Para..> Additional statements as needed
> End of Thl Ti t | eCont ent statement
> End of Thl Ti t | e statement
Table rows
<Tbl H Table heading rows; omit if no table headings
<Row..> See ““Row statement,” next
<Row..> Additional statements as needed
> End of Thl Hstatement
<Tbl Body Table body rows
<Row..> See “Row statement,” next
<Row..> Additional statements as needed
> End of Tbl Body statement
<Tbl F Table footing rows; omit if no table footing
<Row..> See ““Row statement,” next
<Row..> Additional statements as needed
> End of Thl F statement
> End of Thl statement
Usage

The table column statements specify the actual width of the table instance columns. They override the
column widths specified in the Thl For mat statement.

Row statement

A Rowstatement contains a list of cells. It also includes row properties as needed. The statement must

appear inaThl statement.

89

Syntax

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Row

<Condi tional ..>

Specifies conditional row (row is unconditional if the statement is
omitted)

<RowW t hNext bool ean>

Keep with next body row

<RowW t hPr ev bool ean>

Keep with previous body row

<RowM nHei ght di nmensi on>

Minimum row height

<RowvaxHei ght di mensi on>

Maximum row height

<RowHei ght di mensi on>

Row height

<RowPI acenent keyword>

Row placement

keywor d can be one of:
Anywher e

Col umTop
LPageTop

RPageTop

PageTop

Each Row statement contains one Cel | statement for each column
(see “Cell statement,” next)

<Cell .>

<Cell .> Additional statements as needed

> End of Row statement

Usage

Each Rowstatement contains a Cel | statement for each column in the table, even if a straddle hides a cell.
ExtraCel | statementsare ignored; too few Cel | statements result in empty cells in the rightmost columns
of the row.

When you rotate a cell to a vertical orientation, the width of unwrapped text affects the height of the row.
You can use RowvaxHei ght and RowM nHei ght to protect a row’s height from extremes caused by
rotating cells containing multiline paragraphs, or to enforce a uniform height for the rows.

A FrameMaker product writes out the RowHei ght statement for use by other programs. It is not used by
the MIF interpreter. Even if the statement is present, the MIF interpreter recalculates the height of each row
based on the row contents and the RowM nHei ght and RowivaxHei ght statements.

Cell statement

A Cel | statement specifies a cell’s contents. It also includes format, straddle, and rotation information as
needed. The statement must appear in a Row statement.

90

Syntax

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Cel |

<Cell Fill integer>

Fill pattern for cell, 0-15 (see page 121)

<Cel | Col or tagstring>

Color for cell (see “ColorCatalog statement” on page 94)

<Cel | Separati on integer>

Color for cell; no longer used, but written out by
FrameMaker products for backward-compatibility (see
“Color statements” on page 280)

<Cel | LRul i ng tagstring>

Left edge ruling style (from Ruling Catalog)

<Cel | BRul i ng tagstring>

Bottom edge ruling style

<Cel | RRul i ng tagstring>

Right edge ruling style

<Cel | TRul i ng tagstring>

Top edge ruling style

<Cel | Col umms i nt eger >

Number of columns in a straddle cell

<Cel | Rows i nt eger>

Number of rows in a straddle cell

<Cel | Af f ect sCol umW dt hA bool ean>

Yes restricts column width to cell width

<Cel | Angl e degrees>

Angle of rotation in degrees: 0, 90, 180, or 270

<Cel | Cont ent

Cell’s content

<Not es..> Footnotes for cell (see page 140)
<Para..> Cell’s content, represented in one or more Par a state-
ments (see page 141)
<Par a..> Additional statements as needed
> End of Cel | Cont ent statement
> End of Cel | statement
Usage

You can use the Rotate command on the Graphics menu to change the Cel | Angl e, but it does not affect
the location of cell margins. Cel | Angl e affects only the orientation and alignment of the text flow. When
Cel | Angl e is 90 or 270 degrees, use Pgf Cel | Al i gnment to move vertically oriented text closer to or
farther from a column edge. For information about aligning text in a cell, see Pgf Cel | Al i gnnment on

page 76.

MIF uses Cel | Af f ect sCol umW dt hA only with the Thl Col urmW dt hA statement. The MIF default
for computing a cell’s width is Thl Col urmW dt hA. However, if any cells in the column have <Cel | Af -
f ect sCol uimW dt hA Yes>, then only those cells affect the computed column width.

Usage of MIF statements to calculate the width of a column is described in the following sections.

91

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Determining table width

When a FrameMaker product writes MIF files, it uses Tbl Col uimW dt h in the Thl statement to specify
column width. However, filters that generate MIF files can use other statements to determine the table
width.

This method ~ Uses these statements To do this

Fixed width Tbl Col umW dt h Give a fixed value for column’s width (see page 86)

Shrink-wrap ~ Tbl Col umW dt hA Fit a column within minimum and maximum values (see
page 86)

Restricted Tbl Col utmW dt hA and Use particular cells to determine column width (see

Cel | Af f ect sCol urmW dt hA Page 91)

Proportional Tbl Col umW dt hP Create a temporary value for a column width when filter-
ing proportional-width columns from another applica-
tion; the MIF interpreter converts the value to a fixed
width (see page 86 and ““Calculating proportional-width
columns,” next)

Equalized Equal i zeW dt hs and Apply the width of the widest column to specified col-
Tbl Col urmNum umns in the same table (see page 88)

The table example in “Creating an entire table” on page 255 shows several ways to determine column
width.

Calculating proportional-width columns

MIF uses this formula to calculate the width of proportional-width columns:

n .
PTotal X PWidth

The arguments have the following values:

n Value of Tbl Col uimW dt hP
PTotal Sum of the values for all Tbl Col uimW dt hP statements in the table
PWidth Available space for all proportional columns (Thl W dt h — the sum of fixed-width columns)

For example, suppose you want a four-column table to be 7 inches wide, but only the last three columns to
have proportional width.

= The columns have the following widths:

Column 1 has a fixed-width value of 1": <Tbl Col utmW dt h 1" >
Column 2 has a proportional value of 2: <Tbl Col umW dt hP 2>
Column 3 has a proportional value of 1. <Tbl Col umW dt hP 1>
Column 4 has a proportional value of 1; <Tbl Col umW dt hP 1>

- Available width for proportional columns (PW dt h) is 7" — 1" or 6".

92

ADOBE FRAMEMAKER 6.0 |93
MIF Document Statements

= Sum of all proportional values (PTotal) is2+ 1+ 1or4.
= Width for Column 2 is (2/PTot al) X PW dt h = (2/4) x 6" or 3".
« Width for Column 3 or Column 4 is (1/PTotal) x PW dt h = (1/4) x 6" or 1.5".

RulingCatalog statement

The Rul i ngCat al og statement defines the contents of the Ruling Catalog, which describes ruling styles
for tables. A document can have only one Rul i ngCat al og statement, which must appear at the top level
in the order given in “MIF file layout” on page 64.

Syntax

<Rul i ngCat al og
<Ruling..> Defines ruling style (see “‘Ruling statement” on page 93)
<Ruling.> Additional statements as needed

> End of Rul i ngCat al og statement

Ruling statement

The Rul i ng statement defines the ruling styles used in table formats. It must appear within the Rul i ng-
Cat al og statement.

Syntax
<Rul i ng
<Rul i ngTag tagstring> Ruling style name; an empty string indicates no ruling style
<Rul i ngPenW dt h di nensi on> Ruling line thickness
<Rul i ngGap di mensi on> Gap between double ruling lines
<Rul i ngCol or tagstring> Color of ruling line (see “ColorCatalog statement™ on
page 94)
<Rul i ngSeparation integer> Color of ruling line; no longer used, but written out by
FrameMaker products for backward-compatibility (see
“Color statements™ on page 280)
<Rul i ngPen i nt eger> Pen pattern O through 7, or 15 (see page 121)
<Rul i ngLi nes i nteger> 0 (none), 1 (single), or 2 (double) ruling lines
> End of Rul i ng statement

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Color

You can assign colors to text and objects in a FrameMaker document. A FrameMaker document has a set
of default colors; you can also define your own colors and store them in the document’s Color Catalog. A
FrameMaker document has three color models you can use to create colors: CMYK, RGB, and HLS. You
can also choose inks from installed color libraries such as PANTONE®.

In a MIF file, colors are defined by a Col or statement within a Col or Cat al og statement. Regardless of
the color model used to define a new color, colors are stored in a MIF file in CMYK.

You can define a color as a tint of an existing color. Tints are colors that are mixed with white. A tint is
expressed by the percentage of the base color that is printed or displayed. A tint of 100% is equivalent to
the pure base color, and a tint of 0% is equivalent to no color at all.

You can specify overprinting for a color. However, if overprinting is set for a graphic object, the object’s
setting takes precedence. When a graphic object has no overprint statement, the overprint setting for the
color is assumed.

You can set up color views to specify which colors are visible in a document. The color views for a
document are specified in the Vi ews statement. The current view for the document is identified in a
DCur r ent Vi ewstatement.

The color of a FrameMaker document object is expressed in a property statement for that object. In this
manual, the syntax description of a FrameMaker document object that can have a color property includes
the appropriate color property substatement.

ColorCatalog statement

The Col or Cat al og statement defines the contents of the Color Catalog. A document can have only one
Col or Cat al og statement, which must appear at the top level in the order given in “MIF file layout” on
page 64.

Syntax

<Col or Cat al og

<Col or ..> Defines a color (see “Color statement,” next)
<Col or ..» Additional statements as needed
> End of Col or Cat al og statement

Color statement

The Col or statement defines a color. It must appear within the Col or Cat al og statement. Note that MIF
version 5.5 and later supports multiple color libraries. The Col or Pant oneVal ue statement has been
replaced by the Col or Fanmi | yNanme and Col or | nkName statements.

94

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Syntax
<Col or
<Col or Tag tagstring> Color tag name
<Col or Cyan percent age> Percentage of cyan (0-100)
<Col or Magent a percent age> Percentage of magenta (0-100)
<Col or Yel | ow per cent age> Percentage of yellow (0-100)
<Col or Bl ack percentage> Percentage of black (0-100)
<Col or Li braryFam | yNane string> Color library name
<Col or Li braryl nkName string> Specifies name of the color library pigment. Older ver-
sions of MIF that use Col or Pant oneVal ue can still be
read into MIF 5.5 and later. The full ink name must be
used.
<Col or Attri bute keyword> Identifies a default FrameMaker document color
keywor d can be one of:
Col or | sBl ack
Col orl s\Wite
Col or | sRed
Col or I sGeen
Col or | sBl ue
Col or I sCyan
Col or | sivagent a
Col or I sYel | ow
Col or | sReserved
<Col or Ti nt percent age> 100% indicates solid color; less than 100% indicates a
reduced percentage of the color
<Col or Ti nt BaseCol or string The name of the color from which the tint is derived. If
the base color does not exist in the document, black will
be used.
<Col or Over print bool ean> Yes indicates overprint is set for the color; No indicates
knockout.
> End of Col or statement
Usage

In a MIF file, all colors are expressed as a mixture of cyan, magenta, yellow, and black. The Col or At -

t ri but e statement identifies a default FrameMaker document color; the default colors are all reserved
(specified by the Col or | sReser ved keyword) and cannot be modified or deleted by the user. A reserved
default color can have two Col or At t ri but e statements, for example:

<Col orAttri bute Col orlsCyan>
<Col orAttribute Col orl sReserved>
A color tint must be based on an existing color. This has two implications:

95

ADOBE FRAMEMAKER 6.0 |96
MIF Document Statements

- |If the base color doesn't exist in the document, black is used as the base color for the tint.

= The color value statements (values for CMYK, color family, and ink name) are ignored when included
in a tint statement. However, FrameMaker writes out color value statements for a tint, even though they
will be ignored. To modify the color values of a tint, modify the color value statements for the base color
used by the tint.

Views statement

The Vi ews statement contains the color views for the document. A document can have only one Vi ews
statement, which must appear at the top level in the order given in “MIF file layout” on page 64.

Syntax

<Vi ews
<Vi ew..> Defines a color view (see “View statement,” next)
<Vi ew..> Additional statements as needed

> End of Vi ews statement

View statement

For each color view, the Vi ewstatement specifies which colors will be displayed, which will be displayed as
cutouts, and which will not be displayed at all. The Vi ewstatement must appear in a Vi ews statement.

Syntax
<Vi ew
<Vi ewNunber i nteger> View number (1-6)
<Vi ewCut out tagstring> Name of color to print as cutout separation
<Vi ewCut out ..> Additional statements as needed
<Vi ewl nvi si bl e tagstring> Name of color to hide
<Vi ewl nvi si bl e..> Additional statements as needed
> End of Vi ewstatement
Variables

All variable definitions for a document are contained in a Var i abl eFor mat s statement. Both user-
defined and system-defined variables are defined by a Var i abl eFor nmat statement. A Vari abl e

ADOBE FRAMEMAKER 6.0
MIF Document Statements

statement that refers to the variable name shows where the variable appears in text (see “ParaLine
statement” on page 142).

VariableFormats and VariableFormat statements

The Var i abl eFor mat s statement defines document variables to be used in document text flows. A MIF
file can have only one Var i abl eFor mat s statement, which must appear at the top level in the order given
in “MIF file layout” on page 64.

Each vari abl eFor mat statement supplies a variable name and its definition. The statement must appear
inaVari abl eFor mat s statement.

Syntax
<Vari abl eFor mat s
<Vari abl eFor nat
<Vari abl eNane tagstring> Name of variable
<Vari abl eDef string> Variable definition
> End of Var i abl eFor mat statement
<Vari abl eFor nat ..> Additional statements as needed
> End of Var i abl eFor mat s statement
Usage

Var i abl eNane contains the name of the variable, used later in the MIF file by Var i abl e to position the
variable in text. Var i abl eDef contains the variable’s definition. A system-defined variable definition
consists of a sequence of building blocks, text, and character formats. A user-defined variable consists of
text and character formats only.

The system variables for the current page number and running headers and footers can only appear on a
master page in an untagged text flow. You cannot insert any variables in a tagged text flow on a master page.
You can insert variables anywhere else in a text flow.

For more information about variables and the building blocks they can contain, see your user’s manual or
the online Help system.

Cross-references

A FrameMaker document can contain cross-references that refer to other portions of the document or to
other documents. A cross-reference has a marker that indicates the source (where the cross-reference
points) and a format that determines the text and its formatting in the cross-reference.

97

ADOBE FRAMEMAKER 6.0
MIF Document Statements

All cross-reference formats in a document are contained in one XRef For nat s statement. A cross-
reference format is defined by an XRef For mat statement. Within text, an XRef statement and a Mar ker
statement indicate where each cross-reference appears.

XRefFormats and XRefFormat statements

The XRef For mat s statement defines the formats of cross-references to be used in document text flows. A
MIF file can have only one XRef For mat s statement, which must appear at the top level in the order given
in “MIF file layout” on page 64.

The XRef For mat statement supplies a cross-reference format name and its definition. The statement must
appear in an XRef For mat s statement.

Syntax
<XRef For mat s
<XRef For mat
<XRef Nanme string> Cross-reference name
<XRef Def string> Cross-reference definition
> End of XRef For mat statement
<XRef For mat ..> More cross-reference definitions as needed
> End of XRef For mat s statement
Usage

XRef Nane supplies the cross-reference format name, which is used later by the XRef statement to apply a
format to the text of the cross-reference. The XRef Def statement supplies the cross-reference format
definition, which is a string that contains text and cross-reference building blocks.

For more information about cross-references and their building blocks, see your user’s manual or the
online Help system.

Global document properties

A FrameMaker document has properties that specify the document page size, pagination style, view
options, current user preferences, and other global document information. The user sets these properties
by using various commands, such as the Document command, the View command, the Normal Page
Layout command, and others.

In a MIF file, global document properties are specified as substatements in a Docunent statement. If you
do not provide these property statements, the MIF interpreter assumes the properties specified in NewTem
pl at e. (For information on defaults specified in templates, see page 9.)

98

ADOBE FRAMEMAKER 6.0 |99
MIF Document Statements

The BookConponent statement specifies setup information for files generated from the document. The
Di cti onary statement contains the user’s list of allowed words for the document.

Document statement

The Docunent statement defines global document properties. A document can have only one Docunent
statement, which must appear at the top level in the order given in “MIF file layout” on page 64.

A Docunent statement does not need any of these property substatements, which can occur in any order.
It can also contain additional substatements describing standard equation formats. (See “MIF Equation
Statements” on page 198.)

PDF Document Info

For version 6.0 and later, the FrameMaker product stores PDF Document Info in the document file. The
FrameMaker product automatically supplies values for Creator, Creation Date and Modification Data;
these Document Info fields do not appear in MIF. Via the user interface, a user can specify values for
Author, Title, Subject, and Keywords; these values appear in MIF. A document can also contain arbitrary
Document Info fields if they have been entered via an FDK client or by editing a MIF file. In MIF, each
Document Info entry consists of one Key statement and at least one Val ue statement.

A Key statement contains a string of up to 255 ASCII characters. The Key names a Document Info field,
and in PDF the name can be up to 126 characters long. You represent non-printable characters via #HH,
where # identifies a hexadecimal representation of a character, and HH is the hexadecimal value for the
character. For example, use #23 to represent the “#” character. Zero-value hex-codes (#00) are illegal. In
PDF, these hexadecimal representations are interpreted as PDFDocEncoding (see Portable Document
Format Reference Manual, Addison-Wesley, ISBN 0-201-62628-4).

Note that aa Document Info field name can be up to 126 characters long, and a MIF string can contain up
to 255 characters. Some characters in the key string may be hexadecimal representations, and each
hexadecimal representation uses three ASCII characters. For example, a Key of 126 non-printing
characters would require 378 ASCII characters. However, since a valid MIF string can only have up to 255
ASCII characters, such a Key statement woud be invalid in MIF.

The contents of the Document Info field is represented by a series of Val ue statements. Each value
statement can contain a string of up to 255 ASCII characters. The Document Info contents can contain up
to 32765 Unicode characters. To accomodate this number of Unicode characters, the FrameMaker product
generates MIF in the following ways:

- It represents the Document Info contents as a series of Value statements, each one 255 ASCII characters
long, or less.

- It uses special codes to indicate Unicode characters that are outside the standard ASCII range. Mif repre-
sents Unicode characters as &#xHHHH; , where &#x opens the character code, the “; ” character closes the
character code, and HHHH are as many hexadecimal values as are required to represent the character.

Note that each Unicode representation of a character uses up to seven ASCII characters. For example, a
string of 255 Unicode characters could require as many as 1785 ASCII charactrers.

For example, The following MIF statements show three possible Document Info fields:

<PDFDocl nf o

<Key " Author' >
<Val ue "Thomas Aqui nas' >
<Key "Title'>

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Val ue “That the Soul Never Thinks Wthout an | nage' >

<Key " Subj ect' >

<Val ue “Modern transl ation of the views of T. A concerning cognition; "It is'>

<Val ue

<Val ue "0 a body capabl e of receiving inpressions,

> # end of PDFDocl nfo

Syntax

i npossi ble for our intellect,

inits present state of being joined t'>

actually to understand...'>

<Docunent

Document properties

<DNext Uni que | D>

Refers to the next object with a <Uni que | D>
statement; generated by a FrameMaker product
and should not be used by filters

Window properties

<DVi ewRect X Y WH>

Position and size of document window based on
position and size of the document region within
containing window; DVi ewRect takes prece-
dence over DW ndowRect

<DW ndowRect X Y W H>

Position and size of document window based on
the containing window (including the title bar,
etc.)

<DVi ewScal e percentage>

Current zoom setting

Column properties

<Dvargins L T R B>

Not generated by a FrameMaker product, but used
by filters to specify text margins; ignored unless
DCol umms is specified

<DCol ums i nt eger >

Not generated by a FrameMaker product, but used
by filters to specify number of columns

<DCol um@Gap di nensi on>

Not generated by a FrameMaker product, but used
by filters to specify column gap

<DPageSi ze WH>

Document’s default page size and orientation; if W
is less than H, the document’s orientation is por-
trait; otherwise it is landscape

Pagination

<DSt art Page i nt eger >

Starting page number

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DPageNuntt yl e keywor d>

Page numbering style

keywor d can be one of:
Ar abi c
UCRoman
LCRonman

UCAl pha

LCAl pha
ZenLCAl pha
ZenUCAI pha
Kanj i Nurreri ¢
Kanj i Kazu
Busi nessKazu

<DPagePoi nt Styl e keyword>

Point page number style

keywor d can be one of:
Ar abi c

UCRonman

LCRoman

UCAl pha

LCAl pha

<DTwoSi des bool ean>

Yes specifies two-sided layout

<DParity keyword>

Specifies whether first page is left or right page

keywor d can be one of:
FirstlLeft
Fi rstRi ght

<DPageRoundi ng keywor d>

Method for removing blank pages or modifying
total page count before saving or printing

keywor d can be one of:
Del et eEnpt yPages
MakePageCount Even
MakePageCount Cdd
Dont ChangePageCount

<DFr ozenPages bool ean>

Yes if Freeze Pagination is on

Document format properties

<DSmar t Quot esOn bool ean>

Use curved left and right quotation marks

<DSnart SpacesOn bool ean>

Prevents entry of multiple spaces

<DLi nebr eakChars string>

OK to break lines at these characters

<DPunct uati onChars string>

Punctuation characters that a FrameMaker prod-

uct does not strip from run-in heads; these charac-

ters override the default punctuation set in
Pgf Runl nDef aul t Punct (see page 74)

Conditional text defaults

<DShowAl | Condi ti ons bool ean>

Shows or hides all conditional text

101

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DDi spl ayOverri des bool ean>

Turns format indicators of conditional text on or
off

Footnote properties

<DFNot eTag string>

Paragraph and reference frame tag for document
footnotes

<DFNot eMaxH di nensi on>

Maximum height allowed for document footnotes

<DFNot eRest art keywor d>

Document footnote numbering control by page or
text flow

keywor d can be one of:
Per Page
Per FI ow

<FNot eSt art Num i nt eger >

First document footnote number

<DFNot eNuntt yl e keywor d>

Document footnote numbering style

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha
ZenLCAl pha
ZenUCAI pha
Kanj i Nurreri c
Kanj i Kazu
Busi nessKazu
Cust om

<DFNot eLabel s string>

Characters to use in custom document footnote
numbers

<DFNot eAnchor Pos keywor d>

Placement of document footnote number in text

keywor d can be one of:
FNSuper scri pt
FNBasel i ne
FNSubscri pt

<DFNot eNunber Pos keywor d>

Placement of number in document footnote

keywor d can be one of:
FNSuper scri pt
FNBasel i ne
FNSubscri pt

<DFNot eAnchor Prefix string>

Prefix before document footnote number in text

<DFNot eAnchor Suf fi x string>

Suffix after document footnote number in text

<DFNot eNunber Prefix string>

Prefix before number in document footnote

<DFNot eNunber Suf fi x string>

Suffix after number in document footnote

102

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Table footnote properties

<DTbl FNot eTag string>

Same meaning for the following statements as the
corresponding document footnote properties

<DTbl FNot eLabel s string>

<DTbl FNot eNuntst yl e keywor d>

<DTbl FNot eAnchor Pos keywor d>

<DTbl FNot eNunber Pos keywor d>

<DTbl FNot eAnchor Prefi x string>

<DTbl FNot eAnchor Suf fi x string>

<DTbl FNot eNunber Prefi x string>

<DTbl FNot eNunber Suf fi x string>

Change bar properties

<DChBar Gap di mensi on>

Change bar distance from column

<DChBar W dt h di mensi on>

Thickness of change bar

<DChBar Posi ti on keywor d>

Position of change bar

keywor d can be one of:
Lef t O Col

Ri ght Of Col

Near est Edge

Fur t hest Edge

<DChBar Col or tagstring>

Change bar color (see “ColorCatalog statement™
on page 94)

<DAut oChBar s bool ean>

Turns automatic change bars on or off

Document view properties

<DGri dOn bool ean>

Turns on page grid upon opening

<DPageGri d di mensi on>

Spacing of page grid

<DSnapGi d di mensi on>

Spacing of snap grid

<DSnapRot ati on degrees>

Angle of rotation snap

<DRul er sOn bool ean>

Turns on rulers upon opening

<DFul | Rul ers bool ean>

Turns on formatting ruler upon opening

<DBor der sOn bool ean>

Turns on borders upon opening

<DSynbol sOn bool ean>

Turns on text symbols upon opening

<DGr aphi csOf f bool ean>

Yes displays text only

103

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DPageScrol | i ng keywor d>

Specifies how the FrameMaker product displays
consecutive pages

keywor d can be one of:
Vari abl e

Hori zont al

Verti cal

Faci ng

<DCurrent Vi ew i nt eger>

Specifies current color view (1- 6)

<DLi nkBoundar i esOn bool ean>

Turns on boundaries for Macintosh publishers
upon opening

View Only document properties

<DVi ewOnl y bool ean>

Yes specifies View Only document (locked)

<DVi ewOnl yXRef keywor d>

Changes behavior of active cross-references in
View Only document (see page 57)

keywor d can be one of:
Got oBehavi or
OpenBehavi or

Not Acti ve

<DVi ewOnl ySel ect keyword>

Disables/enables user selection in View Only docu-
ment, including selection with modifier keys, and
sets highlighting style of destination markers for
active cross-references (see “Using active cross-
references” on page 57)

keywor d can be one of:

No (disable user selection)

Yes (enable user selection and highlighting)

User Onl y (enable selection but not highlighting)

<DVi ewOnl yNoOp Oxnnn>

Disables a command in a View Only document;
command is specified by hex function code (see
page 58)

<DVi ewOnl yW nBor der s bool ean>

No suppresses display of scroll bars and border
buttons in document window of View Only docu-
ment

<DVi ewOnl yW nMenubar bool ean>

No suppresses display of document window menu
bar in View Only document

<DVi ewOnl yW nPopup bool ean>

No suppresses display of document-region pop-up
menus in View Only document

<DVi ewOnl yW nPal ett e bool ean>

Yes makes window behave as command palette
window in View Only document

104

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Document default language

<DLanguage keyword>

Hyphenation and spell-checking language for text
lines; for allowed keywords, see Pgf Language
on page 75

Color printing

<DNoPri nt SepCol or tagstring>

Tag name of color not to print; any color not
included here is printed

<DPri nt ProcessCol or tagstring>

Tag name of process color to print as separation

<DPri nt Separ ati ons bool ean>

Yes prints separations

<DTr apwi seConpati bility bool ean>

When printing to a PostScript file, Yes generates
postscript optimized for use with the TrapWise
application

<DPri nt Ski pBl ankPages bool ean>

Yes skips blank pages when printing

Superscripts and subscripts

<DSuper scri pt Si ze percent>

Scaling factor for superscripts expressed as per-
centage of the current font size

<DSubscri pt Si ze percent>

Scaling factor for subscripts expressed as percent-
age of current font size

<DSnul | CapsSi ze percent >

Scaling factor for small caps expressed as percent-
age of current font size

<DSuper scri pt Shift percent>

Baseline offset of superscripts expressed as per-
centage of current font size

<DSubscri pt Shift percent >

Baseline offset of subscripts expressed as percent-
age of current font size

<DSuper scri pt Stretch percent>

Amount to stretch or compress superscript, where
100% means no change

<DSubscri pt Stretch percent>

Amount to stretch or compress subscript, where
100% means no change

<DSmal | CapsStretch percent >

Amount to stretch or compress small caps, where
100% means no change

<DRubi Si ze percent age>

The size of the rubi characters, proportional to the
size of the oyamoji characters (see “Rubi text” on
page 242.)

Reference properties

<DUpdat eXRef sOnCpen bool ean>

Yes specifies that cross-references are automati-
cally updated when the document is opened

<DUpdat eText | nset sOnOpen bool ean>

Yes specifies that text insets are automatically
updated when the document is opened

105

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Acrobat preferences

<DAcr obat Bookmar ksl ncl udeTagNanes
bool ean>

Yes specifies that each Acrobat Bookmark title
begins with the name of the paragraph tag

<DGener at eAcr obat | nf o bool ean>

Yes sets the document’s print options to their
required states for generating Acrobat information

Document-specific menu bars

<DMenuBar string>

Name of the menu bar displayed by an FDK client
when the document is opened; if an empty string
is specified or if the menu bar is not found, the
standard FrameMaker menu bar is used

<DVoMenuBar string>

Name of the menu bar displayed by an FDK client
when the document is opened in View Only mode;
if an empty string is specified or if the menu bar is
not found, the standard FrameViewer menu bar is
used

Math properties

For more information, see “MIF Equation State-
ments” on page 198.

Structure properties

For more information, see “MIF Statements for
Structured Documents and Books™ on page 167.

Miscellaneous properties

<DMagi cMar ker i nteger> Type number of the marker used to represent a
delete mark
<DMagi cMar ker i nteger> Type number of the marker used to represent a

delete mark

<Document

Document properties

<DNextUnique ID>

Refers to the next object with a <Uni que | D> statement;
generated by a FrameMaker product and should not be used
by filters

Window properties

<DViewRect X Y W H>

Position and size of document window based on position and
size of the document region within containing window;
DVi ewRect takes precedence over DW ndowRect

<DWindowRect X Y W H>

Position and size of document window based on the contain-
ing window (including the title bar, etc.)

<DViewScale percentage>

Current zoom setting

Column properties

<DMargins L TR B>

Not generated by a FrameMaker product, but used by filters
to specify text margins; ignored unless DCol umms is speci-
fied

106

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DColumns integer>

Not generated by a FrameMaker product, but used by filters
to specify number of columns

<DColumnGap dimension>

Not generated by a FrameMaker product, but used by filters
to specify column gap

<DPageSize W H>

Document’s default page size and orientation; if W is less
than H, the document’s orientation is portrait; otherwise it is
landscape

Volume, chapter, and page numbering
properties

Volume numbering

<VolumeNumStart integer>

Starting volume number

<VolumeNumStyle keyword>

Style of volume numbering

keyword can be one of:
Arabi c
UCRoman
LCRoman

UCAl pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Custom

<VolumeNumText string>

When Vol umeNuntt yl e is set to Cust om this is the string
to use

<VolNumComputeMethod keyword>

Volume numbering

keyword can be one of:

St art Nunber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous
document in book)

UseSanmeNunber i ng (use the same numbering as previous
document in book)

Chapter numbering

<ChapterNumStart integer>

Starting chapter number

107

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<ChapterNumStyle keyword>

Style of chapter numbering

keyword can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha

Kanj i Nuneri c
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Custom

<ChapterNumText string>

When Chapt er Nunfst yl e is set to Cust om this is the
string to use

<ChapterNumComputeMethod keyword>

Chapter numbering

keyword can be one of:

St art Nunber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous
document in book)

UseSanmeNunber i ng (use the same numbering as previous
document in book)

Page numbering

<DPageNumStyle keyword>

Page numbering style

keyword can be one of:
Ar abi c
UCRoman
LCRoman

UCAI pha

LCAl pha
ZenLCAl pha
ZenUCAl pha
Kanj i Nuneri c
Kanj i Kazu
Busi nessKazu

<DPagePointStyle keyword>

Point page number style

keyword can be one of:
Ar abi c

UCRoman

LCRoman

UCAl pha

LCAl pha

<DStartPage integer>

Starting page number

<ContPageNum boolean>

Yes means continue page numbering from the previous doc-

ument in the book

108

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Pagination

<DTwoSides boolean>

Yes specifies two-sided layout

<DParity keyword>

Specifies whether first page is left or right page

keyword can be one of:
FirstlLeft
FirstRi ght

<DPageRounding keyword>

Method for removing blank pages or modifying total page
count before saving or printing

keyword can be one of:
Del et eEnpt yPages
MakePageCount Even
MakePageCount Gdd
Dont ChangePageCount

<DFrozenPages boolean>

Yes if Freeze Pagination is on

Document format properties

<DSmartQuotesOn boolean>

Use curved left and right quotation marks

<DSmartSpacesOn boolean>

Prevents entry of multiple spaces

<DLinebreakChars string>

OK to break lines at these characters

<DPunctuationChars string>

Punctuation characters that a FrameMaker product does not
strip from run-in heads; these characters override the default
punctuation set in Pgf Runl nDef aul t Punct (see page 74)

Conditional text defaults

<DShowAlIConditions boolean>

Shows or hides all conditional text

<DDisplayOverrides boolean>

Turns format indicators of conditional text on or off

Footnote properties

<DFNoteTag string>

Paragraph and reference frame tag for document footnotes

<DFNoteMaxH dimension>

Maximum height allowed for document footnotes

<DFNoteRestart keyword>

Document footnote numbering control by page or text flow

keyword can be one of:
Per Page
Per FI ow

<FNoteStartNum integer>

First document footnote number

109

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DFNoteNumStyle keyword>

Document footnote numbering style

keyword can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha
ZenLCAl pha
ZenUCAl pha
Kanj i Nureri c
Kanj i Kazu
Busi nessKazu
Cust om

<DFNotelLabels string>

Characters to use in custom document footnote numbers

<DFNoteComputeMethod keyword>

Footnote numbering

keyword can be one of:

Cont i nue (continue numbering from previous component
in book)

Rest art (restart numbering)

<DFNoteAnchorPos keyword>

Placement of document footnote number in text

keyword can be one of:
DONZuTEPOXPITIT
PNBooEAIVE
DNZvBoxpimt

<DFNoteNumberPos keyword>

Placement of number in document footnote

keyword can be one of:
FNSuper scri pt
FNBasel i ne
FNSubscri pt

<DFNoteAnchorPrefix string>

Prefix before document footnote number in text

<DFNoteAnchorSuffix string>

Suffix after document footnote number in text

<DFNoteNumberPrefix string>

Prefix before number in document footnote

<DFNoteNumberSuffix string>

Suffix after number in document footnote

Table footnote properties

<DTblIFNoteTag string>

Same meaning for the following statements as the corre-
sponding document footnote properties

<DTblIFNoteLabels string>

<DTbIFNoteNumStyle keyword>

<DTbIFNoteAnchorPos keyword>

<DTbIFNoteNumberPos keyword>

110

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DTbIFNoteAnchorPrefix string>

<DTbIFNoteAnchorSuffix string>

<DTbIFNoteNumberPrefix string>

<DTbIFNoteNumberSuffix string>

Change bar properties

<DChBarGap dimension>

Change bar distance from column

<DChBarWidth dimension>

Thickness of change bar

<DChBarPosition keyword>

Position of change bar

keyword can be one of:
Left O Col

Ri ght O Col

Near est Edge

Fur t hest Edge

<DChBarColor tagstring>

Change bar color (see “ColorCatalog statement” on
page 94)

<DAutoChBars boolean>

Turns automatic change bars on or off

Document view properties

<DGridOn boolean>

Turns on page grid upon opening

<DPageGrid dimension>

Spacing of page grid

<DSnapGrid dimension>

Spacing of snap grid

<DSnapRotation degrees>

Angle of rotation snap

<DRulersOn boolean>

Turns on rulers upon opening

<DFullRulers boolean>

Turns on formatting ruler upon opening

<DBordersOn boolean>

Turns on borders upon opening

<DSymbolsOn boolean>

Turns on text symbols upon opening

<DGraphicsOff boolean>

Yes displays text only

<DPageScrolling keyword>

Specifies how the FrameMaker product displays consecutive
pages

keyword can be one of:
Vari abl e

Hori zont al

Verti cal

Faci ng

<DCurrentView integer>

Specifies current color view (1- 6)

<DLinkBoundariesOn boolean>

Turns on boundaries for Macintosh publishers upon opening

111

ADOBE FRAMEMAKER 6.0
MIF Document Statements

View Only document properties

<DViewOnly boolean>

Yes specifies View Only document (locked)

<DViewOnlyXRef keyword>

Changes behavior of active cross-references in View Only
document (see page 59)

keyword can be one of:
Got oBehavi or
OpenBehavi or

Not Acti ve

<DViewOnlySelect keyword>

Disables/enables user selection in View Only document,
including selection with modifier keys, and sets highlighting
style of destination markers for active cross-references (see
“*Using active cross-references” on page 59)

keyword can be one of:

No (disable user selection)

Yes (enable user selection and highlighting)

User Onl y (enable selection but not highlighting)

<DViewOnlyNoOp 0xnnn>

Disables a command in a View Only document; command is
specified by hex function code (see page 59)

<DViewOnlyWinBorders boolean>

No suppresses display of scroll bars and border buttons in
document window of View Only document

<DViewOnlyWinMenubar boolean>

No suppresses display of document window menu bar in
View Only document

<DViewOnlyWinPopup boolean>

No suppresses display of document-region pop-up menus in
View Only document

<DViewOnlyWinPalette boolean>

Yes makes window behave as command palette window in
View Only document

Document default language

<DLanguage keyword>

Hyphenation and spell-checking language for text lines; for
allowed keywords, see Pgf Language on page 75

Color printing

<DNoPrintSepColor tagstring>

Tag name of color not to print; any color not included here is
printed

<DPrintProcessColor tagstring>

Tag name of process color to print as separation

<DPrintSeparations boolean>

Yes prints separations

<DTrapwiseCompatibility boolean>

When printing to a PostScript file, Yes generates postscript
optimized for use with the TrapWise application

<DPrintSkipBlankPages boolean>

Yes skips blank pages when printing

Superscripts and subscripts

112

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DSuperscriptSize percent>

Scaling factor for superscripts expressed as percentage of the
current font size

<DSubscriptSize percent>

Scaling factor for subscripts expressed as percentage of cur-
rent font size

<DSmallCapsSize percent>

Scaling factor for small caps expressed as percentage of cur-
rent font size

<DSuperscriptShift percent>

Baseline offset of superscripts expressed as percentage of
current font size

<DSubscriptShift percent>

Baseline offset of subscripts expressed as percentage of cur-
rent font size

<DSuperscriptStretch percent>

Amount to stretch or compress superscript, where 100%
means no change

<DSubscriptStretch percent>

Amount to stretch or compress subscript, where 100%
means no change

<DSmallCapsStretch percent>

Amount to stretch or compress small caps, where 100%
means no change

<DRubiSize percentage>

The size of the rubi characters, proportional to the size of the
oyamoji characters (see “Rubi text” on page 228.)

Reference properties

<DUpdateXRefsOnOpen boolean>

Yes specifies that cross-references are automatically updated
when the document is opened

<DUpdateTextinsetsOnOpen
boolean>

Yes specifies that text insets are automatically updated when
the document is opened

PDF preferences

<DAcrobatBookmarksincludeTagNames bool-
ean>

Yes specifies that each PDF Bookmark title begins with the
name of the paragraph tag

<DGenerateAcrobatinfo boolean>

Yes sets the document’s print options to their required states
for generating PDF information

<DPDFStructure boolean>

Yes indicates that the document includes structure state-
ments for Structured PDF

<DPDFStructureDefined boolean>

Statement to determine how the FrameMaker product
should display the PDF structure settings in the PDF Setup dia-
log box; this statement is for internal FrameMaker use, and
you should not modify it

<DPDFBookmarks boolean>

Yes indicates that the FrameMaker product will create PDF
bookmarks when you save as PDF

<DPDFAIlINamedDestinations boolean>

Yes indicates that the FrameMaker product will create
named destinations for all paragraphs and elements in the
document; this style of marking creates larger PDF files

113

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DPDFDestsMarked boolean>

Yes indicates that the paragraphs and elements that are tar-
gets of hypertext markers or cross-references have been
marked according to optimization rules for version 6.0 or
later; this style of marking makes it unnecessary to use
<DPDFCr eat eNanmedDest i nati ons Yes>

<PDFDoclInfo

Specifies the information that appears in the Document Info
dictionary when you save the document as PDF

Each Document Info entry consists of one Key statement fol-
lowed by at least one Val ue statemen. The FrameMaker
product ignores any Key statement that is not followed by at
least one Val ue statement.

There is no representation in MIF of the default fields for
Creator,Creation Date,orMdification Date.

For more information, see ““PDF Document Info”” on page 99.

<Key string>

A string of up to 255 ASCII characters that represents the
name of a Document Info field; in PDF the name of a Docu-
ment Info field must be 126 characters or less.

Represent non-printable characters via #HH, where # identi-
fies a hexadecimal representation of a character, and HH is
the hexadecimal value for the character. For example, use
#23 to represent the “#” character. Zero-value hex -codes
(#00) are illegal.

For more information, see ““PDF Document Info” on page 99.

<Value string>

A string of up to 255 ASCII characters that represents the
value of a Document Info field; because a single MIF string
contains no more than 255 ASCII characters, you can use
more than one Val ue statement for a given Key

A Value can include Unicode characters; represent Unicode
characters via &#xHHHH; , where &#x opens the character
code, the *“; ” character closes the character code, and HHHH
are as many hexadecimal values as are required to represent
the character.

For more information, see “PDF Document Info” on page 99.

>

End of PDFDocl nf o statement

Document-specific menu bars

<DMenuBar string>

Name of the menu bar displayed by an FDK client when the
document is opened; if an empty string is specified or if the
menu bar is not found, the standard FrameMaker menu bar
is used

114

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DVoMenuBar string>

Name of the menu bar displayed by an FDK client when the
document is opened in View Only mode; if an empty string is
specified or if the menu bar is not found, the standard
FrameViewer menu bar is used

Math properties

For more information, see “MIF Equation Statements” on
page 189.

Structure properties

For more information, see “MIF Statements for Structured
Documents and Books™ on page 160.

Miscellaneous properties

<DMagicMarker integer>

Type number of the marker used to represent a delete mark

<DMagicMarker integer>

Type number of the marker used to represent a delete mark

BookComponent statement

BookConponent statements contain the setup information for files that are generated from the document
(for example, a table of contents or an index). Book Conponent statements must appear at the top level in
the order given in “MIF file layout” on page 64. These statements are used even if the document does not
occur as part of a book. A BookConponent statement can contain one or more Der i veTag Statements.

Syntax

<BookConponent

Book components

<Fi | eNanme pat hname>

Generated file’s device-independent pathname (for pat hnane syntax,
see page 13)

<Fi | eNameSuf fi x string>

Suffix for the generated file

<Deri veType keyword>

Type of generated file

keywor d can be one of:
AML (alphabetic marker list)
APL (alphabetic paragraph list)
| DX (index)

| QA (author index)

| OM(index of markers)

| OS (subject index)

I R (index of references)
LOF (list of figures)
LOM(list of markers)

LOP (list of paragraphs)
LOT (list of tables)

LR (list of references)

TOC (table of contents)

<DeriveTag tagstring>

Tags to include in the generated file

<Deri veli nks bool ean>

Yes automatically creates hypertext links in generated files

End of BookConponent statement

115

InitialAutoNums statement

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Thel ni ti al Aut oNuns statement controls the starting values for autonumber series in a document. A
MIF file can have only one I ni ti al Aut oNurnrs statement, which must appear at the top level in the order

given in “MIF file layout” on page 64.

An autonumber format includes a series label to identify the type of autonumber series and one or more
counters. Thel ni ti al Aut oNums statement initializes the counters so that series that continue across files
in a book are numbered correctly. Any statement that increments the counter value starts from the initial

setting.

Syntax

<l ni tial Aut oNuns

<Aut oNunteri es

<Fl owTag string>

Specifies flow that the file uses to number the series

<Series string>

Specifies autonumber series

<NuntCount er integer>

Initializes autonumber counter

<NunmCount er ..>

Additional statements as needed

>

End of Aut oNunBSer i es statement

<Aut oNunSeri es..?

Additional statements as needed

End of I ni ti al Aut oNurs statement

Dictionary statement

The Di cti onary statement lists all the words in the document dictionary. A MIF file can have only one
Di cti onary statement, which must appear at the top level in the order given in “MIF file layout” on

page 64.

Syntax

<Di ctionary

<OKWord string>

Word in dictionary

<OKWord string>

Additional statements as needed

End of Di cti onary statement

116

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Pages

Pages in a MIF file are defined by a Page statement. A FrameMaker document can have four types of pages:

= Body pages contain the document’s text and graphics.
- Master pages control the appearance of body pages.

- Reference pages contain boilerplate material or graphic art that is used repeatedly in a document, or
custom math elements.

« Hidden pages contain hidden conditional text in a special text flow.

When a FrameMaker product writes a MIF file, it writes a sequence of numbered body pages. When you
generate a MIF file, you should only define one body page and allow the MIF interpreter to automatically
create new body pages as needed. For more information about using body pages in a MIF file, see “Speci-
fying page layout” on page 40.

Page statement

The Page statement adds a new page to the document. Page statements must appear at the top level in the
order given in “MIF file layout” on page 64.

Syntax
<Page

<PageType keyword> Page type
keywor d can be one of:
Lef t Mast er Page
Ri ght Mast er Page
O her Mast er Page
Ref er encePage
BodyPage
Hi ddenPage

<PageNum string> Page number for additive pages (provided for output filters)

<PageTag tagstring> Names master or reference page; for a body page, specifies a dif-
ferent page number (for example, a point page) to be used
instead of the default page number

<PageSi ze WH> Page width and height; written by a FrameMaker product but
ignored when a MIF file is read or imported (see DPageSi ze on
page 100)

<PageAngl e degrees> Rotation angle of page in degrees (0, 90, 180, 270); angles are
measured in a counterclockwise direction with respect to the
page’s original orientation as determined by the page size (see
DPageSi ze on page 100)

117

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<PageBackgr ound keywor d> Names master page to use for current page background (body
pages only)

keywor d can be one of:
None

Def aul t

pagenamne

<Text Rect ..> Defines text frame (see page 138)

<Frame..> Graphic frames on the page (see the section “Graphic objects and
graphic frames” on page 119)

Graphi c object statements Objects on the page (see the section “Graphic objects and graphic
frames™ on page 119)

Filter statements

<Header L string> Left header string
<Header C string> Center header string
<Header R string> Right header string
<FooterL string> Left footer string
<Foot er C string> Center footer string
<Foot erR string> Right footer string
<HFMargins L T R B> Header/footer margins
<HFFont Header/footer font (see page 77)

>
<Col ums i nt eger > Default number of columns
<Col utm@Gap di mensi on> Default column gap
> End of Page statement
Usage

Master and reference page names (supplied by the PageTag statement) appear in the status bar of a
document window. The PageBackgr ound statement names the master page to use as the background for
a body page. A value of Def aul t tells a FrameMaker product to use the right master page for single-sided
documents and to alternate between the right and left master pages for a two-sided document. For more
information about applying master page layouts to body pages, see “Specifying page layout” on page 40.

A page of type Hi ddenPage contains the document’s hidden conditional text. (See “How a FrameMaker
product writes a conditional document” on page 52.)

A page’s size and orientation (landscape or portrait) is determined by the PageAng! e statement and the
Docunent substatement DPageSi ze. If DPageSi ze defines a portrait page (one whose height is greater
than its width), pages with an angle of 0 or 180 degrees are portrait; pages with an angle of 90 or 270 degrees

118

ADOBE FRAMEMAKER 6.0
MIF Document Statements

are landscape. If DPageSi ze defines a landscape page (one whose width is greater than its height), pages
with an angle of 0 or 180 degrees are landscape; pages with an angle of 90 or 270 degrees are portrait.

The filter statements are not generated by a FrameMaker product. When it reads a MIF file generated by a
filter, the MIF interpreter uses these statements to set up columns and text flows on master pages.

Graphic objects and graphic frames

In a FrameMaker document, graphic objects can appear directly on a page or within a graphic frame. The
following objects are considered graphic objects:

- Anchored and unanchored frames
- Text frames
- Text lines

= Objects created with the drawing tools on the Tools palette: arcs, arrows, ellipses, polygons, polylines,
rectangles, and rounded rectangles

- Math equations
- Groups
- Imported graphic images, such as xwd, TIFF, bitmap images, or vector images

In a MIF file, graphic objects are defined by Obj ect and Fr ane statements. Obj ect refers to any MIF
statement that describes an object, such as Ar ¢, Text Li ne, or Text Rect . Generally, these objects are
created and manipulated by using the Tools palette in a FrameMaker document. This section describes
general information that pertains to all graphic objects, and then lists the MIF statements for graphic
objects in alphabetic order.

Object positioning
Each Page statement has nested within it Obj ect and Fr ame statements. If a graphic frame contains

objects and other graphic frames, the graphic frames and objects are listed in the order that they are drawn
(object in back first).

For Qbj ect and Fr ane statements, the interpreter keeps track of the current page and current graphic
frame. When the interpreter encounters a Fr ame statement, it assumes the graphic frame is on the current
page. Similarly, when the interpreter encounters an object statement, it assumes the object is in the current
graphic frame or page.

When you open a MIF file as a FrameMaker document, the default current page is page 1, and the default
current frame is the page frame for page 1. A page frame is an invisible frame that “contains” objects or
graphic frames placed directly on a page. The page frame is not described by any MIF statement. When you
import a MIF file into an existing FrameMaker document, the default current page is the first page visible
when the Import command is invoked; the current frame is the currently selected frame on that page. If
there is no currently selected frame, the current frame is the page frame for that page.

119

Generic object statements

ADOBE FRAMEMAKER 6.0
MIF Document Statements

All object descriptions consist of the object type, generic object statements containing information that is
common to all objects, and statements containing information that is specific to that type of object. This
section describes the generic object statements.

Syntax
<ID I D> Object ID number
<G oupl D | D> ID of parent group object
<Uni que | D> ID, persistent across sessions, assigned when a FrameMaker prod-

uct generates a MIF file; used by the FDK client and should not be
used by filters

<Pen i nteger>

Pen pattern for lines and edges (see “Values for Pen and Fill state-
ments” on page 121)

<Fill integer>

Fill pattern for objects (see “Values for Pen and Fill statements™ on
page 121)

<PenW dt h di mensi on>

Line and edge thickness

<bCol or tagstring>

Applies color from Color Catalog (see page 94)

<oTi nt percentage>

Applies a tint to the object color; 100% is equivalent to the pure
object color and 0% is equivalent to no color at all

<Separation integer>

Applies color; no longer used, but written out by FrameMaker
products for backward-compatibility (see ““Color statements” on
page 280)

<Qver print bool ean>

Yes turns on overprinting for the graphic object. No turns on
knockout. If this statement is not present, then the overprint set-
ting from the object’s color is assumed.

<Runar oundType keyword>

Specifies whether text can flow around the object and, if so,
whether the text follows the contour of the object or a box shape
surrounding the object

keywor d can be one of:
Cont our

Box

None

<Runar oundGap di nensi on>

Space between the object and the text flowing around the object;
must be a value between 0.0 and 432.0 points

<Angl e degrees>

Rotation angle of object in degrees; default is O

Frames, cells, and equations can only be rotated in 90-degree
increments; all other objects can be arbitrarily rotated.

<ReRot at eAngl e di nensi on>

Previous rotation angle of object in degrees

120

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<DashedPattern

<DashedSt yl e keyword> Specifies whether object is drawn with a dashed or a solid line

keywor d can be one of:

Solid
Dashed
<NunmSegnent s i nt eger > Number of dash segments; ignored when MIF file is read
<DashSegnent di mensi on> Defines a dash segment (see “DashSegment values” on
page 122)
<DashSegnent di mensi on> Additional statements as needed
> End of DashedPat t er n statement

Usage
The | Dsubstatement is necessary only if other objects refer to the object. For example, anchored frames,
groups, and linked text frames require | D substatements.

The Gr oupl Dstatement is necessary only if the object belongs to a set of grouped objects (Gr oup
statement). All objects in the set have the Gr oup! D of the parent object. See “Group statement” on
page 128.

Values for Pen and Fill statements

Values forthe Pen and Fi | | statements refer to selections in the Tools palette. Graphics can use all the Pen
and Fi I | values illustrated below. Ruling lines and table shadings use only the first seven pen/fill values
and 15 (none). The pen and fill patterns might look different on your system.

Pen/Fill 0

Pen/Fill Patterns in Tools palette

Each Pen, Fi I I, or PenW dt h substatement resets the MIF interpreter’s corresponding current value. If
an Qbj ect statement doesn’t include one of these statements, the MIF interpreter uses the current default
value for the object data.

In a FrameMaker document, patterns aren’t associated directly with a document, but with the FrameMaker
product itself. Each FrameMaker document contains indexes to the FrameMaker product patterns. You
cannot define document patterns in MIF; you can only specify the values 0-15. However, you can
customize a UNIX or Windows version of a FrameMaker product to use patterns that differ from the
standard set. For information, see the online manuals Customizing FrameMaker Products for UNIX and
Working on Multiple Platforms for Windows.

121

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Values for the Angle and ReRotateAngle statements

The Angl e statement specifies the number of degrees by which an object is rotated before it is printed or
displayed. In a FrameMaker document, you can rotate an object in either a counterclockwise or clockwise
direction. In a MIF file, the rotation angle is always measured in a counterclockwise direction.

An object without an Angl e statement has an angle of 0 degrees. If an object has a ReRot at eAngl e
statement, it specifies the angle to use when Esc g 0 (zero) is used to return the object to a previous rotation
angle. An object with a ReRot at eAngl e statement must have an angle of 0 degrees.

The Angl e and ReRot at eAngl e statements are mutually exclusive. When the MIF interpreter reads an
Angl e statement with a nonzero value, it sets the value of the ReRot at eAngl e statement to 0. When it
reads a ReRot at eAngl e statement with a nonzero value, it sets Angl e to 0. Thus, if an object has both
statements, the MIF interpreter keeps the state of the most recently read statement.

Objects do not inherit rotation angles from other objects.
A FrameMaker product rotates objects as follows:

= Polygons, polylines, and Bezier curves are rotated around the center of the edge mass.
- Text lines are rotated around the TLOr i gi n point.

= Arcs are rotated around the center of the bounding rectangle of the arc, not the bounding rectangle of
the underlying ellipse. The bounding rectangle is the smallest rectangle that encloses an object. See your
user’s manual for more information about rotation.

= Other objects are rotated around the center of the object.

DashSegment values

If the DashedSt yI e statement has a value of Dashed, the following DashSegment statements describe
the dashed pattern. The value of a DashSegnent statement specifies the length of a line segment or a gap
in a dashed line. See the online manual Customizing FrameMaker Products for information on changing
default dashed patterns in UNIX versions of FrameMaker products. In Windows versions, edit the
<product >. i ni file in the directory where the FrameMaker product is installed (<pr oduct > can be
maker or f msgni). See Customizing FrameMaker Products for more information. You can also define
custom dash patterns. For examples, see “Custom dashed lines” on page 253. You cannot change dash
patterns for Macintosh versions of FrameMaker products.

Values for the RunaroundType and RunaroundGap statements

The Runar oundType and Runar oundGap statements specify the styles used for the runaround properties
of objects:

- If the Runar oundType statement is set to Cont our, text flows around objects in the shape of the
contours of the objects. The Runar oundGap statement specifies the distance between the objects and the
text that flows around them.

- If the Runar oundType statement is set to Box, text flows around objects in the shape of boxes
surrounding the objects. The Runar oundGap statement specifies the distance between the objects and the
text that flows around them.

122

ADOBE FRAMEMAKER 6.0
MIF Document Statements

- If the Runar oundType statement is set to None, text doesn’t flow around objects, and the value specified
by the Runar oundGap statement is ignored.

Objects inherit the values of these statements from previous objects. Since these statements are used only
to change the inherited value from a previous object, the statements are not needed for every object. For
example, if you write out a MIF file, not all objects will contain these statements.

If these statements do not appear in an object or MIF file, the following rules apply:

- If an object does not contain the Runar oundType statement or the Runar oundGap statement,

FrameMaker products use the values from the previous Runar oundType and Runar oundGap statements.

« If no previous Runar oundType and Runar oundGap statements exist in the MIF file, FrameMaker
products use the default values <Runar oundType None> and <Runar oundGap 6. 0>.

= For example, if the <Runar oundGap 12. 0> statement appears, all objects after that statement have a
12.0 point gap from text that flows around them. If this is the only Runar oundGap statement in the MIF
file, all objects before that statement have a 6.0 point gap (the default gap value) from the text that flows
around them.

- If the MIF file does not contain any Runar oundType Statements or Runar oundGap statements,
FrameMaker products use the default values <Runar oundType None> and <Runar oundGap 6. 0> for
all objects in the file.

= For example, 3.x and 4.x MIF files do not contain any Runar oundType statements. When opening these
files, FrameMaker products use the default value <Runar oundType None>, and text does not flow
around any of the existing graphic objects in these files.

AFrames statement

The AFr anes statement contains the contents of all anchored frames in a document. A document can have
only one AFr anes statement, which must appear at the top level in the order given in “MIF file layout” on
page 64.

The contents of each anchored frame are defined in a Fr ame statement. Within the text flow, an AFr ame
statement indicates where each anchored frame appears by referring to the 1D provided in the original
frame description (see “ParalLine statement” on page 142).

Syntax

<AFr anes
<Fr ame..> Defines a graphic frame (see “Frame statement™ on page 125)
<Frane..> Additional statements as needed

> End of AFr ames statement

123

Arc statement

M

ADOBE FRAMEMAKER 6.0
IF Document Statements

The Ar ¢ statement describes an arc. It can appear anywhere at the top level, or in a Fr ame or Page

statement.

Syntax

<Arc

Ceneric object statements

Information common to all objects (see page 120)

<HeadCap keyword>

Type of head cap for lines and arcs

keywor d can be one of:
Arr owHead

But t

Round

Squar e

<Tai |l Cap keyword>

Type of tail cap for lines and arcs

keywor d can be one of:
Arr owHead

But t

Round

Squar e

<ArrowsStyle.>

See “ArrowsStyle statement” on page 124

<ArcRect L T WH>

Underlying ellipse rectangle

<Ar cTheta di nensi on>

Start angle

<Ar cDThet a di mensi on>

Arc angle length

End of Ar ¢ statement

Usage

The arc is a segment of an ellipse whose bounding rectangle is defined in Ar cRect . Ar c Thet a specifies
the starting point of the arc in degrees. Zero corresponds to twelve o’clock, 90 to three o’clock, 180 to six
o’clock, and 270 to nine o’clock. Ar cDThet a corresponds to the length of the arc. Positive and negative

values correspond to clockwise and counterclockwise extents.

ArrowStyle statement

The Ar r owst yI e statement defines both the head cap (at the starting point) and the tail cap (at the ending

point) of lines and arcs.

The arrow style property statements can appear in any order in an Ar r owSt y! e statement. For a complete
description of arrow style properties, see your user’s manual.

124

ADOBE FRAMEMAKER 6.0 |125
MIF Document Statements

Syntax
<ArrowsStyl e
<Ti pAngl e i nt eger> Arrowhead tip angle in degrees
<BaseAngl e i nt eger> Arrowhead base angle in degrees
<Lengt h di mensi on> Arrowhead length
<HeadType keyword> Arrowhead type
keywor d can be one of:
Stick
Hol | ow
Filled
<Scal eHead bool ean> Yes scales head as arrow line gets wider
<Scal eFact or di nensi on> Scaling factor for arrowhead as line gets wider
> End of Ar r owSt yl e statement

Ellipse statement

The El | i pse statement describes circles and noncircular ellipses. It can appear anywhere at the top level,
or in a Fr ane or Page statement.

Syntax
<El l'i pse
Ceneric object statenments Information common to all objects (see page 120)
<ShapeRect L T WH> Position and size of object’s bounding rectangle, before rotation, in
the page or graphic frame coordinates
> End of El | i pse statement

Frame statement

Usually, a Fr amre statement contains a list of Obj ect and Fr ame statements that define the contents of the
graphic frame and are listed in the draw order from back to front.

The Fr ane statement can appear at the top level or in a Page, Fr ane, or AFr ane statement.

Syntax
<Fr ame
Ceneric object statements Information common to all objects (see page 120)
<ShapeRect L T WH> Position and size of object, before rotation, in page or graphic
frame coordinates

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<FrameType keyword>

Whether graphic frame is anchored, and if anchored, the posi-
tion of the anchored frame

keywor d can be one of:
Bel ow

Top

Bott om

Inline

Left

Ri ght

I nsi de

CQut si de

Near

Far

Runl nt oPar agr aph
Not Anchor ed

<Tag tagstring>

Name of graphic frame

<Fl oat bool ean>

Yes floats graphic frame to avoid large white space that results
when anchored frame and the line containing it are moved to
the next page

<NSOf f set di mensi on>

Near-side offset

<BLOf f set dinmensi on>

Baseline offset

<Anchor Al i gn keywor d>

Alignment of anchored frame

keywor d can be one of:
Left

Center

Ri ght

I nsi de

CQut si de

<Anchor Besi de keyword>

Whether the graphic frame is anchored outside of a text frame
or a column in a text frame

keywor d can be one of:
Col um
Text Frame

<Cr opped bool ean>

Yes clips sides of graphic frame to fit column

<Frane..>

Other graphic frames within this frame

Graphi c object statements

Obijects in the graphic frame (see page 119)

End of Fr ane statement

Usage

Unless the generic object data indicates otherwise, the MIF interpreter assumes that each graphic frame

inherits the properties of the current state.

126

ADOBE FRAMEMAKER 6.0
MIF Document Statements

A Fr ane statement that is contained within an AFr anes statement defines an anchored frame. Any other
Fr ame statement defines an unanchored frame. The assumed value for Fr ame Ty pe is Not Anchor ed.

For anchored frames, an AFr ame statement that refers to the frame ID indicates where the anchored frame
appears within the text flow (see “ParaLine statement” on page 142).

Specifications for the position and alignment of anchored frames are described in the following sections.

Position of anchored frames

The Anchor Besi de statement determines whether the graphic frame is anchored to a text column
(Col umm) or a text frame (Text Fr ame).

The Fr aneType statement specifies the position of an anchored frame. A graphic frame can be anchored
within a text column or text frame or outside a text column or text frame.

If the graphic frame is anchored within a text column or text frame, the anchored frame can be positioned
in one of the following ways.

If the graphic frame is anchored within a text column or The Frame statement contains
text frame

At the insertion point of the cursor <FraneType | nline>

At the top of the text column <FranmeType Top>

Below the insertion point of the cursor <FrameType Bel ow>

At the bottom of the text column <FranmeType Bottone

Running into the paragraph <FranmeType Runl nt oPar agr aph>

If the graphic frame is anchored outside a text column or a text frame, the anchored frame can be
positioned in one of the following ways.

If the graphic frame is anchored outside a text column or ~ The Frame statement contains
text frame

On the left side of the text column or text frame <FrameType Left>

On the right side of the text column or text frame <FrameType Ri ght>

On the side of the text column or text frame closer to the <FrameType | nsi de>
binding of the book (the ““inside edge™)

On the side of the text column or text frame farther from <FranmeType Qut si de>
the binding of the book (the *“outside edge™)

On the side of the text column or text frame closer to any <Fr anmeType Near >
page edge

On the side of the text column or text frame farther from <FranmeType Far >
any page edge

127

ADOBE FRAMEMAKER 6.0 (128
MIF Document Statements

Alignment of anchored frames

If a graphic frame is anchored within a text column or text frame, the Anchor Al i gn statement specifies
the alignment of the anchored frame. Unless anchored at the insertion point of the cursor, the graphic
frame can be aligned in one of the following ways.

If the graphic frame is aligned The Frame statement contains
With the left side of the text column or text frame <Anchor Al ign Left>

In the center of the text column or text frame <Anchor Al i gn Center>
With the right side of the text column or text frame <Anchor Al i gn Ri ght >

With the side of the text column or text frame closer to <Anchor Ali gn | nsi de>
the binding of the book (the “inside edge™)

With the side of the text column or text frame farther ~ <Anchor Al i gn Qut si de>
from the binding of the book (the “outside edge”)

Group statement

The G oup statement defines a group of graphic objects and allows objects to be nested. The Gr oup
statement must appear after all the objects that form the group. It can appear at the top level or within a
Page or Fr ame statement.

Syntax

<G oup
<ID I D> Group ID
<Uni que | D> ID, persistent across sessions, assigned when a FrameMaker product generates a

MIF file; used by the FDK client and should not be used by filters
<Angl e..> Rotation angle of group (see page 120)
> End of G- oup statement
Usage

When the MIF interpreter encounters a Gr oup statement, it searches all objects within the current graphic
frame for those group IDs that match the ID of the Gr oup statement. These objects are then collected to

form the group. All objects with the same group ID must be listed in the MIF file before their associated

G oup statement is listed. If multiple Gr oup statements have the same ID, the results will be unpredictable.
For more information about the group ID, see “Generic object statements” on page 120.

ImportObject statement

The | npor t Obj ect statement describes an imported graphic. It can appear at the top level or within a
Page or Fr ame statement.

The imported graphic is either copied into the document or imported by reference:

ADOBE FRAMEMAKER 6.0
MIF Document Statements

- If the imported graphic is copied into the document, the data describing the graphic is recorded within
the | npor t Obj ect statement. The description of a graphic in a given format is called a facet.

- FrameMaker products use facets to display graphics, print graphics, or store additional graphic infor-
mation. Imported graphics can have more than one facet, which means that the graphic is described in

more than one format.

- If the graphic is imported by reference, the data describing the graphic is not stored within the | npor -

t Obj ect statement. Instead, a directory path to the file containing the graphic data is recorded in the

| mpor t Obj ect statement.

Syntax

<l nmport Obj ect

Ceneric object statenents

Information common to all objects (see page 120)

<I nmport QbFi | e pat hnane>

Object’s UNIX-style pathname; no longer used, but written out
by FrameMaker products for backward-compatibility

<I nport ObFi | eDl pat hname>

Object’s device-independent pathname (see page 13)

<l nmport H nt string>

Record identifying the filter used for graphics imported by ref-
erence (see “Record of the filter used to import graphic by ref-
erence” on page 133)

<ShapeRect L T WH>

Position and size of object, before rotation, in the page or
graphic frame coordinates

<Bi t MapDpi i nt eger>

Scaling value for bitmap file; ignored for FrameVector graphics

<I npor t ObFi xedSi ze bool ean>

Yes inhibits scaling of bitmap file (see “Size, position, and
angle of imported graphics™ on page 130); ignored for
FrameVector graphics

<Fl i pLR bool ean>

Yes flips object about the vertical axis

=string

Specifies the name of the facet used to describe the graphic
imported by copying (see ““Facet Formats for Graphics™ on
page 283.)

&Ykeywor d

Identifies the data type used in the facet (see “Facet Formats for
Graphics™ on page 283.).

keywor d can be one of:
v (for unsigned bytes)

i (for integer data)
m(for metric data)

Data describing the imported graphic; data must begin with the
ampersand character (see “Facet Formats for Graphics™ on
page 283.)

&\ X

Marks the beginning or end of data represented in hexadecimal
(see “Facet Formats for Graphics™ on page 283.)

=Endl nset

End of the data describing the imported graphic

129

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<NativeOrigin X Y> Coordinates of the origin of the imported graphic within the
page or frame; applicable for graphics that use coordinate sys-
tems, such as EPS

<l nmport ObEdi t or string> Name of application to call to edit bitmap graphic inset or
imported object; ignored for FrameVector graphics

<| nport GbUpdat er string> Identifies the imported graphic as a Macintosh subscriber or an
embedded Windows OLE object (for a description of the syntax
of the string, see “Methods of importing graphics” on
page 131)

> End of | nport Obj ect statement

Usage

The | mpor t Obj ect statement describes the imported graphic’s position, size, and angle. If the graphic is
imported by reference, the statement describes the path to the graphic file. If the imported graphic is
copied into the document, the statement contains the data describing the graphic. Data describing the
graphic is stored in one or more facets. If the graphic is linked with an application (through FrameServer
or an FDK client), the statement also describes the path to the application used to edit the graphic.

Usage of some of the aspects of the | npor t Obj ect statement is described in the following sections.

Graphic file formats

You can import different types of graphic files into a FrameMaker document.

Bitmaps: The term bitmap graphics (also called raster graphics) refers to graphics represented by bitmap
data. Graphics file formats recognized by FrameMaker products include Framelmage, Sun™ rasterfile,
xwd, TIFF, MacPaint, PCX, and GIF files.

Vector: The term vector graphics (also called object-oriented graphics) refers to graphics represented by
geometric data. Graphics file formats recognized by FrameMaker products include FrameVector, CGM,
Corel Draw, Micrografx Drawing Format, DXF, EPS, GEM, HPGL, IGES, PICT, WMF, and WPG. Note
that some of these graphic file formats can also contain bitmap data.

Size, position, and angle of imported graphics

When you import a MIF file, a FrameMaker product determines the size of the graphic by the graphic type
and the value of the | npor t ObFi xedSi ze statement.

If the file format is Image scaled Size determined by

Bitmap with <I npor t ObFi xedSi ze Yes> No ShapeRect statement

Bitmap with <I npor t CbFi xedSi ze No> Yes Bi t MapDpi statement

Vector Yes Dimensions specified in the vector data

Encapsulated PostScript, QuickDraw PICT No Bounding box information in imported
image

130

ADOBE FRAMEMAKER 6.0 [131
MIF Document Statements

Position and coordinate systems: Some types of graphics (such as EPS) use coordinate systems to
specify the position of the graphic. When these types of graphics are imported into a FrameMaker
document, the Nat i veOri gi n statement specifies the coordinates of the origin of the graphic within the
page or frame. If the imported graphic is updated, FrameMaker products use the coordinates from the
Nat i veOri gi n statement to prevent the graphic from shifting on the page or frame.

Size and scale of TIFF graphics: FrameMaker products don’t use internal TIFF dpi information for
sizing purposes because not all TIFF files contain that information and because it may be incorrect.
FrameMaker products allow users to set the dpi manually when importing the TIFF file. Once the graphic
is imported, FrameMaker products display the dpi information in the Object Properties dialog box.

QuickDraw PICT graphics on the Macintosh: Macintosh versions of FrameMaker products don’t
parse a QuickDraw PICT image. Instead, these FrameMaker products treat the image as an opaque object
that is rendered by the operating system. After you import a QuickDraw PICT image, however, you can set
an explicit dpi with the Properties command on the Graphics menu. When you do so, a FrameMaker
product scales the image on the assumption that its original size was 72 dpi.

Normally, QuickDraw PICT graphics are treated as vector graphics, but you can use Bi t MapDpi to help
optimize printed output.

Angle of imported graphics: If an object contains both a <Fl i pLR Yes> statement and an Angl e
statement with a nonzero value, the object is first flipped around the vertical axis and then rotated by the
value specified in Angl e.

Methods of importing graphics

As mentioned previously, an imported graphic can be imported by reference or copied into the document.
In Macintosh and Windows versions, an imported graphic can be a subscriber or an embedded OLE object.

The following table shows how the structure of the | npor t Obj ect statement differs, depending on how
the graphic is imported. For an explanation of the facet syntax, see “Facet Formats for Graphics” on
page 283.

If the graphic is The ImportObject statement contains
Copied into the FrameMaker document =facet _nane

&data_type

&f acet _data

=Endl nset
Imported by reference <l nport GbFi | eDl pat hname>

<l mportHi nt string>

An embedded OLE object (Windows only) =O0OLE

&data_t ype

&f acet _data

=f acet _name

&dat a_t ype

&f acet _data

=Endl nset

<l npor t CbUpdater " OLE >

ADOBE FRAMEMAKER 6.0 |132
MIF Document Statements

If the graphic is The ImportObject statement contains

A graphics subscriber (Macintosh only) =facet _nane
&data_type
&f acet _data
=Endl nset
<l npor t CbUpdat er ~ MacSubscri ber. | Sl D. Mod-
Dat e. pat hname' >

If the imported graphic is a Macintosh subscriber, the subscriber is specified by the * Mac Sub-
scriber.|SID. MdbDate. pat hname' string inthel npor t CoUpdat er statement. The fields in this string
are explained below:

= | SI Dis an internal section ID plus 65536 (1000 hex).
- ModDat e is a modification date in hexadecimal in Macintosh (1904) date format.

- pat hnane is a device-independent pathname to the edition.

Filenames of objects imported by reference
When an object is imported by reference to an external file, the I npor t Obj ect statement contains the file
pathname.

The I npor t QbFi | eDI statement specifies the pathname for graphics imported by reference. The
statement supplies a device-independent pathname so that files can easily be transported across different
types of systems (see “Device-independent pathnames” on page 13).

In previous versions of FrameMaker products, the | npor t QoFi | e statement was used to specify the
pathname for graphics imported by reference. The statement, which is no longer used, supplies a UNIX-
style pathname, which uses a slash (/) to separate directories (for example, <I nport ObFi | e
“/usr/doc/tenplate. mf'>). AFrameMaker product still writes the | nport CoFi | e statements to
a MIF file for compatibility with version 1.0 of FrameMaker.

Facets in imported graphics

If a graphic is copied into a document, the data describing the graphic is stored as facets in the MIF file.
(Graphics imported by reference also use facets, but these are temporary and are not saved to the file. A
MIF file with a graphic imported by reference does not contain any facets.)

A facet contains graphic data in a specific format. For example, a TIFF facet contains graphic data
described in TIFF format. An EPSI facet contains graphic data in EPSI format.

Facets and facet formats are described in the appendixes of this manual;

- For a general description of facets and facet formats, see “Facet Formats for Graphics” on page 283.

- For a description of the facet format for EPSI graphic data, see “EPSI Facet Format” on page 294.

- For adescription of the Framelmage format used in facets, see “Framelmage Facet Format” on page 296.

- For a description of the FrameVector format in facets, see “FrameVector Facet Format” on page 304.

ADOBE FRAMEMAKER 6.0 [133
MIF Document Statements

Record of the filter used to import graphic by reference

Thel nport Hi nt statement contains a record to identify the filter that was used to import the graphic by
reference. FrameMaker products use the record to find the correct filter to reimport the graphic when a
user opens the document again.

Note that for graphics imported by copy, FrameMaker products use the facet name stored with the graphic.
The | npor t Hi nt statement is not written for graphics imported by copy.

The record specified by the | nport Hi nt statement uses the following syntax:

record_vers vendor format _id platformfilter_vers filter_name

Note that the fields in the record are not separated by spaces. For example:

" 0001PGRFPI CTMAC61.0 Built-in PICT reader'
The rest of this section describes each field in the record.

record_ver s is the version on the record (for example, 0001).

vendor is a code specifying the filter’s vendor. The code is a string of four characters. The following table
lists some of the possible codes.

Code Description

" PGRF' Built-in FrameMaker filters

" FAPI! External FDK client filter

T FFLT External FrameMaker filters
T I MAG External ImageMark filters

" XTND External XTND filters

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by devel-
opers at your site.

format _i d isa code specifying the format that the filter translates. The code is a string of four characters.
The following table lists some of the possible codes.

Code Description

“PICT QuickDraw PICT

TWWVE Windows MetaFile

* EPSF' Encapsulated PostScript (Macintosh)

T EPSI! Encapsulated PostScript Interchange

" EPSB' Encapsulated PostScript Binary (Windows)

" EPSD Encapsulated PostScript with Desktop Control Separations (DCS)
* SNRF' Sun Raster File

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Code Description

"PNTG MacPaint

TPCX ! PC Paintbrush

“TIFF Tag Image File Format

SXWD X Windows System Window Dump file

A F Graphics Interchange Format (CompuServe)
"MF Maker Interchange Format

"FRM' Framelmage

" FRW FrameVector

' SRGB' SGI RGB

"CDR ' CorelDRAW

TCaM ! Computer Graphics Metafile

"DRW' Micrografx CAD

" DXF ! Autodesk Drawing eXchange file (CAD files)
TCEM! GEM file (Windows)

T HPA! Hewlett-Packard Graphics Language

T GES Initial Graphics Exchange Specification (CAD files)
TWPG ! WordPerfect Graphics

‘DB Device-independent bitmap (Windows)
“CLE ' Object Linking and Embedding Client (Microsoft)
TEMF Enhanced MetaFile (Windows)

" MooV QuickTime Movie

T MA Image to CCITT Group 4 (UNIX)

THAIM CCITT Group 4 to Image

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by devel-

opers at your site.

pl at f or mis a code specifying the platform on which the filter was run. The code is a string of four
characters. The following table lists some of the possible codes.

Code

Description

" MACE'

Macintosh 68000 series

" MACP

Power Macintosh

134

ADOBE FRAMEMAKER 6.0 |135
MIF Document Statements

Code Description

"W NT Windows NT®

"W N3 Windows 3.1

W N4 Windows 95

“UNI X Generic X/11 (Sun, HP)

filter_vers isastring of four characters identifying the version of the filter on that platform. For
example, version 1.0 of a filter is represented by the string~ 1. 0 ' .

filter_name isa text string (less than 31 characters long) that describes the filter.

More information about imported graphics

For additional information on imported graphics, consult one of the following sources:

- For instructions about modifying an application to create graphic insets for FrameMaker documents, see
the FDK Programmer's Guide.

- If you are using FrameServer or Live Links with graphic insets, see the online manual, Using FrameServer
with Applications and Insets, which is included in the UNIX version of the Frame Developer’s Kit.

= For more information about importing graphics, see your user’s manual.

Math statement
A Mat h statement describes an equation. For its description, see “MIF Equation Statements” on page 198.

Polygon statement

The Pol ygon statement describes a polygon. It can appear at the top level or in a Page or Fr ane
statement.

Syntax
<Pol ygon
CGeneric object statenments Information common to all objects (see page 120)
<Snoot hed bool ean> Yes smooths angles to rounded curves
<NunPoi nts integer> Number of vertices
<Point X Y> Position of object in page or frame coordinates
More points as needed
> End of Pol ygon statement

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Usage

The NunPoi nt s statement is optional. When the MIF interpreter reads a MIF file, it counts the Poi nt
statements to determine the number of points in the polygon.

PolyLine statement

The Pol yLi ne statement describes a polyline. It can appear at the top level or in a Page or Fr anme
statement.

Syntax
<Pol yLi ne

Ceneric object statenments Information common to all objects (see page 120)

<HeadCap keyword> Type of head cap for lines and arcs
keywor d can be one of:
Arr owHead
But t
Round
Squar e

<Tai |l Cap keyword> Type of tail cap for lines and arcs
keywor d can be one of:
Arr owHead
But t
Round
Squar e

<ArrowStyle.> See “ArrowStyle statement” on page 124

<Snoot hed bool ean> Yes smooths angles to rounded curves

<NunPoi nts integer> Number of vertices

<Point X Y> Position in page or graphic frame coordinates
More points as needed

> End of Pol yLi ne statement
Usage

The Pol yLi ne statement is used for both simple and complex lines. A simple line is represented as a
Pol yLi ne with <NunPoi nt s 2>. The NunPoi nt s statement is optional. When the MIF interpreter reads
a MIF file, it counts the Poi nt statements to determine the number of points in the polyline.

Rectangle statement

The Rect angl e statement describes rectangles and squares. It can appear at the top level or in a Page or
Fr ame statement.

136

ADOBE FRAMEMAKER 6.0 |137
MIF Document Statements

Syntax

<Rect angl e

Ceneric object statements Information common to all objects (see page 120)
<ShapeRect L T WH> Position and size of object, before rotation, in page or graphic
frame coordinates
<Snoot hed bool ean> Yes smooths angles to rounded curves
> End of Rect angl e statement

RoundRect statement

A RoundRect statement describes a rectangle with curved corners. It can appear at the top level or in a
Page or Fr ame statement.

Syntax
<RoundRect
Ceneric object statements Information common to all objects (see page 120)
<ShapeRect L T WH> Position and size of object, before rotation, in page or graphic
frame coordinates
<Radi us di nensi on> Radius of corner; O=square corner
> End of RoundRect statement

TextLine statement

The Text Li ne statement describes a text line. It can appear at the top level or in a Page or Fr ane
statement.

A text line is a single line of text that a FrameMaker product treats differently from other text. Text lines
grow and shrink as they are edited, but they do not automatically wrap the way text in a text column does.
Text lines cannot contain paragraph formats, markers, variables, cross-references, or elements.

Syntax
<Text Li ne
Ceneric object statenments Information common to all objects (see page 120)
<TLOrigin X Y> Alignment point origin
<TLAl i gnnent keywor d> Alignment
keywor d can be one of:
Center
Left

Ri ght

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<TLLanguage keywor d>

Spell checking and hyphenation language for text line; for list of
allowed keywords, see Pgf Language on page 75

<Char i nteger>

Nonprinting ASCII character code

Embedded font change (see “PgfFont and Font statements™ on
page 77)

<String string>

Printable ASCII text in single quotation marks; required

End of Text Li ne statement

Usage

The TLOr i gi n statement specifies the baseline (Y) and the left, center, or right edge of the text line (X),
depending on TLAI i gnnment . The text line is rotated by the value specified in an Angl e statement. The

default angle is 0.

A Text Li ne statement contains one or more St ri ng statements. Each St ri ng statement is preceded by

an optional Font statement. The Char

statements provide codes for characters outside the printable ASCII

range. You can define macros that make Char statements more readable, and there are several predefined
constants for character values. (See “Char statement” on page 143.)

TextRect statement

The Text Rect statement defines a text frame. It can appear at the top level or in a Page or Fr anme

statement.

Syntax

<Text Rect

Ceneric object statenments

Information common to all objects (see page 120)

<ShapeRect L T WH>

Position and size of object, before rotation, in page or
graphic frame coordinates

<TRNext i nteger>

ID of next text frame in flow

<TRNumCol umms i nt eger >

Number of columns in the text frame (1- 10)

<TRCol um@Gap di nensi on>

Space between columns in the text frame (0" - 50")

<TRCol utmBal ance bool ean>

Yes means columns in the text frame are automatically
adjusted to the same height

<TRSi deheadW dt h di nensi on>

Width of side head area (0" - 50")

<TRSi deheadGap di nensi on>

Gap between side head area and body text area (0" - 50")

138

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<TRSi deheadPl acenent keyword> Placement of side head in text frame

keywor d can be one of:
Left

Ri ght

I nsi de

Qut si de

<Text Fl ow See “Text flows,” next

> End of Text Rect statement

Usage

A text frame can contain one or more text columns (up to ten text columns). The number of columns and
the space between columns are specified by the TRNunCol urms and TRCol urmGap statements, respec-
tively. The space between columns cannot exceed 50 inches.

FrameMaker products can adjust the height of the text columns to evenly distribute the text in the columns
if the TRCol ummBal ance statement is set to Yes.

A text frame also contains the specifications for the placement of side heads. The width and location of the
side head in a text frame are specified by the TRSi deheadW dt h and TRSi deheadPl acenent state-
ments. The side head area cannot be wider than 50 inches. In the TRSi deheadPl acerment statement, the
I nsi de and Qut si de settings correspond to the side closer to the binding and the side farther from the
binding, respectively. The spacing between the side head and the text columns in the text frame is specified
by the TRSi deheadGap statement. The spacing cannot exceed 50 inches.

TRNext indicates the ID of the next text frame in the flow. If there is no next Text Rect , use a <TRNext
0> statement or omit the entire TRNext statement. The text frame is rotated by the value specified in an
Angl e statement. The default angle is 0.

Text flows

Text flows contain the actual text of a FrameMaker document. In a MIF file, text flows are contained in
Text FI owstatements. Typically, the Text FI owstatement consists of a list of embedded Par a statements
that contain paragraphs, special characters, table and graphic frame anchors, and graphic objects.

When the MIF interpreter encounters the first Text FI owstatement, it sets up a default text flow
environment. The default environment consists of the current text frame, current paragraph properties,
and current font properties. The Text FI owstatement can override all of these defaults.

TextFlow statement

The Text FI owstatement defines a text flow. It can appear at the top level or in a Text Rect statement. It
must appear after all other main statements in the file.

Syntax

<Text Fl ow

139

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<TFTag tagstring>

Text flow tag name

<TFAut oConnect bool ean>

Yes adds text frames as needed to extend flows

<TFPost Scri pt bool ean>

Yes identifies text in the flow as printer code

<TFFeat her bool ean>

Yes adjusts vertical space in column so that last line of text lies
against the bottom of the column

<TFSynchr oni zed bool ean>

Yes aligns baselines of text in adjacent columns

<TFLi neSpaci ng di nensi on>

Line spacing for synchronized baselines

<TFM nHangHei ght di mensi on>

Maximum character height for synchronization of first line in
column; if characters exceed this height, a FrameMaker product
doesn’t synchronize the first line

<TFSi deheads bool ean>

Yes means text flow contains side heads

<TFMaxI nt er Li ne di mensi on>

Maximum interline spacing

<TFMaxI nt er Pgf di nensi on>

Maximum interparagraph spacing

<Not es..>

Defines a footnote (see “Notes statement,” next)

<Para..>

Defines a paragraph (see “Para statement” on page 141)

End of Text FI owstatement

Usage

Most MIF generators will put all document text in one Text FI owstatement. However, if there are subse-
guent Text Fl owstatements, the interpreter assumes they have the same settings (current paragraph

format, current font, and so forth) as the previous text flow.

To divert the flow into a new, unlinked text frame, there must be a Text Rect | D statement in the first
Par aLi ne statement of the new Text FI owstatement (see page 142). The Text Rect | Dstatement resets
the current text frame definition so subsequent text is placed within the identified text frame; this is

necessary only if you want to reset the text frame defaults.

If the text flow contains side heads, the TFSi deheads statement is set to Yes. The Pgf Pl acenent St yl e
statement (under paragraph properties) identifies the side heads, and the Text Rect statement contains

specifications for their size and placement.

For information about text flow properties, see your user’s manual.

Notes statement

The Not es statement defines all of the footnotes that will be used in a table title, cell, or text flow. It can
appear at the top level or at the beginning of a Tbl Ti t | eCont ent, Cel | Cont ent , or Text Fl ow

statement.

140

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Syntax
<Not es
<FNot e
<ID I D> Unique ID
<Uni que | D> ID, persistent across sessions, assigned when a FrameMaker product
generates a MIF file; used by the FDK client and should not be used by
filters
 Changes font as needed (see “PgfFont and Font statements™ on
page 77)
<Para..> Footnote text (see ““Para statement,” next)
<Para..> Additional statements as needed
> End of FNot e statement
<FNot e..> Additional statements as needed
> End of Not es statement
Usage

Within the document text, footnotes are referred to with the <FNot e | D> statement, where | Dis the ID
specified in the corresponding FNot e statement. See “ParaLine statement” on page 142.

Para statement

The Par a statement defines a paragraph. It can appear in a Text Fl ow; FNot e, Cel | Cont ent , or Tbl Ti -
t | eCont ent statement. In simple MIF files without page or document statements (such as the

hel | o. mi f sample file), the Par a statement can also appear at the top level. It usually consists of a list of
embedded Par aLi ne statements that contain the document text.

Syntax

<Par a

<Uni que | D>

ID, persistent across sessions, assigned when a FrameMaker
product generates a MIF file; used by the FDK client and should
not be used by filters

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf .>

Sets current paragraph format (see page 72)

<Pgf NunStri ng string>

Paragraph number (contains the actual string)

141

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Pgf EndCond bool ean>

Used only for hidden conditional text; Yes indicates this is the
last paragraph in the current block of conditional text in the
HIDDEN text flow (see page 52)

<Pgf CondFul | Pgf bool ean>

Used only for hidden conditional text; Yes indicates paragraph
contains end of current block of hidden text and current block
ends with a paragraph symbol

<Par aLi ne..»

See “Paraline statement,” next

End of Par a statement

Usage

By default, a paragraph uses the current Pgf settings (the same settings as its predecessor). Optional

Pgf Tag and Pgf statements reset the current format. If there is a Pgf Tag statement, the MIF interpreter
searches the document’s Paragraph Catalog for a Pgf definition with the same tag. If the tag exists, then
the Paragraph Catalog’s Pgf definition is used. If no definition is found in the catalog, the Pgf definition
of the previous paragraph is used; however, its tag string is reset to the tag in the Pgf Tag statement.

ParalLine statement

The Par aLi ne statement defines a line within a paragraph. It must appear in a Par a statement.

Syntax

<Par aLi ne

<El enentBegin ..>

See “MIF Statements for Structured Documents and
Books™ on page 167.

<TextRectID I D>

Where the following text goes

<Spcl Hyphenat i on bool ean>

Hyphenation of a word at the end of a line causes the word
to be spelled differently, as with German hyphenation

Embedded character change for the following text (see
page 77)

<Condi tional ..>

Turns on conditional text (see page 71)

<Uncondi ti onal >

Returns to unconditional state

<String string>

Printable ASCII text in single quotation marks; required

<Char ..» An extended ASCII character code or special character
name (see page 143)

<ATbl | D> ID of embedded table

<AFrame | D> ID of embedded anchored frame

<FNot e | D> ID of embedded footnote

<Mar ker ..> Embedded marker (see page 144)

142

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Vari abl e Embedded variable
<Vari abl eNane string> Variable name (see page 97)
<Vari abl eLocked bool ean> Yes means the variable is part of a text inset that obtains

its formatting information from the source document

> End of Vari abl e statement

<XRef ..> Embedded cross-reference (see page 98)

<XRef End>

<El ement End ..> See “MIF Statements for Structured Documents and

Books™ on page 167.

> End of Par aLi ne statement

Usage

A typical Par aLi ne statement consists of one or more St r i ng, Char, ATbl , AFr ane, FNot e, Var i abl e,
XRef , and Mar ker statements that define the contents of the line of text. These statements are interspersed
with statements that indicate the scope of document components such as structure elements and condi-
tional text.

TheVari abl eLocked statement is used for text insets that retain formatting information from the source
document.

Ifthe<vari abl eLocked Yes> statement appears in a specific variable, that variable is part of a text inset
that retains formatting information from the source document. The variable is not affected by global
formatting performed on the document.

If the <vari abl eLocked No> statement appears in a specific variable, that variable is not part of a text
inset or is part of a text inset that reads formatting information from the current document. The variable
is affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 148.

Char statement

The Char statement inserts an extended ASCII character in a Par aLi ne statement. It must appear in a
Par aLi ne, Text Li ne, or BookXRef statement.

Syntax

<Char keyword> Preset name for special character (for allowed keywor d values, see “Usage,” next)

Usage

To include an extended ASCII character inaPar aLi ne statement, you must either use a hexadecimal code
to represent the character or use the Char statement with a predefined character name.

143

ADOBE FRAMEMAKER 6.0
MIF Document Statements

For example, you can represent the pound sterling character (£) with the hex code \ xa3 or with the

statement <Char Pound>, as shown in the following example:

<Par a

<Par aLi ne

<String “the pound sterling' >

<Char Pound>

<String ° synbol'>

> # end of Paraline

> # end of Para
<Par a

<Par aLi ne

<String "the pound sterling \xa3 synbol'>

> # end of Paraline

> # end of Para

You can use the <Char Har dRet ur n> statement to insert a forced return in a paragraph. The <Char

Har dRet ur n> statement must be the last substatement in a Par aLi ne statement.

<Par a
<Par aLi ne
<String “string 1'>

<Char Har dRet ur n>

> # end of Paraline

<Par aLi ne

<String “string 2'>

> # end of Paraline

> # end of Para

For a list of character codes, see the Quick Reference for your FrameMaker product. Use the Char statement
for a small set of predefined special characters.

Character name Description

Tab Tab

Har dSpace Nonbreaking space
Sof t Hyphen Soft hyphen

Har dHyphen Nonbreaking hyphen
Di scHyphen Discretionary hyphen
NoHyphen Suppress hyphenation
Cent Cent (¢)

Pound Sterling (£)

144

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Character name Description
Yen Yen (¥)
EnDash En dash (-)
EmDash Em dash (—)
Dagger Dagger (1)
Doubl eDagger Double dagger (1)
Bul | et Bullet (*)

Har dRet ur n Forced return
Nunber Space Numeric space
Thi nSpace Thin space
EnSpace En space
EnSpace Em space

MarkerTypeCatalog statement

The Mar ker TypecCat al og statement defines the contents of the catalog of user-defined markers for the
current document. A document can have only one Mar ker TypeCat al og statement.

Syntax

<Mar ker TypeCat al og

<MTypeNane string> Marker name, as it appears in the Marker Type popup menu of

the Marker dialog box.

>#end of Marker TypeCat al og End of Mar ker TypeCat al og statement

Marker statement
The Mar ker statement inserts a marker. It must appear in a Par aLi ne statement.

For version 5.5 of MIF and later, markers are identified by their names. If you open an earlier version MIF
file that uses markers of type 11 through type 25, the document will show those marker numbers as the
marker names. For MIF version 5.5 or later, MType numbers are still assigned for backward compatibility,
but the assignment of numbers is fairly arbitrary. If the document includes more than 15 custom markers
(Type 11 through Type 25), then the extra custom markers will be assigned <Mrype 25>.

Syntax

<Mar ker

<Uni que | D> ID, persistent across sessions, assigned when a FrameMaker product gener-
ates a MIF file; used by the FDK client and should not be used by filters

145

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<MType i nteger>

Marker type number (for list of allowed values, see “Usage,” next). Marker
type numbers are not used for the current versions of FrameMaker prod-
ucts, but they are included for backward compatibility

<MrypeNane string>

Marker name, as it appears in the Marker Type popup menu of the Marker
dialog box

<Mrext string>

Marker text string

<MCur r Page i nt eger >

Current page of marker assigned when a FrameMaker product generates a
file; ignored when a FrameMaker product reads or imports a MIF file

End of Mar ker statement

Usage

Marker type numbers correspond to the marker names in the Marker window as follows.

This number Represents this marker name

0 Header/Footer $1

1 Header/Footer $2

2 Index

3 Comment

4 Subject

5 Author

6 Glossary

7 Equation

8 Hypertext

9 X-Ref

10 Conditional Text

11 through 25 Type 11 through Type 25, for versions of FrameMaker earlier than 5.5. If more
than 25 markers are defined for the document, all extra markers are assigned
the number 25.

In UNIX versions, you can change the default marker names. For more information, see the online manual,
Customizing FrameMaker Products.

XRef statement

The XRef statement marks a cross-reference in text. It must appear in a Par aLi ne statement.

146

Syntax

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<XRef

<Uni que | D>

ID, persistent across sessions, assigned when a
FrameMaker product generates a MIF file; used by the
FDK client and should not be used by filters

<XRef Nane tagstring>

Name of cross-reference format (see ““XRefFormats and
XRefFormat statements” on page 98)

<XRef Last Updat e seconds microseconds>

Specifies the time when the cross-reference was last
updated; time is measured in the number of seconds and
microseconds that have passed since January 1, 1970

<XRef Locked bool ean>

Yes means the cross-reference is part of a text inset that
obtains its formatting information from the source docu-
ment

<XRef SrcText string>

Text to search for

<XRef Sr cl sEl em bool ean>

Yes means the source of the cross-reference is an ele-
ment from a structured document

<XRef Sr cFi |l e pat hname>

Device-independent pathname of file in which to search
for source text (for pat hnane syntax, see page 13)

>

End of XRef statement

Embedded character change for the following cross-ref-
erence text (see page 77)

<String string>

Text of cross-reference

<XRef End>

End of cross-reference

Usage

The XRef statement marks where a cross-reference appears in text. The XRef Nane statement applies a

format to the cross-reference text; its string argument must match the name of the format provided by an

XRef For mat statement.

The XRef Sr cText statement identifies the cross-reference source. If the source text is in a separate file, the

XRef Sr cFi | e statement provides a device-independent filename. You can omit it or give it an empty
string argument if the cross-reference source is in the same file.

The XRef End statement marks the end of the cross-reference.

Any St ri ng or Char statements between the XRef and XRef End statements represent the actual text of
the cross-reference. These intermediary statements are optional.

For an example of a cross-reference in MIF, see “Creating cross-references” on page 46.

The XRef Locked statement is used for text insets that retain formatting information from the source

document.

147

ADOBE FRAMEMAKER 6.0 (148
MIF Document Statements

If the <XRef Locked Yes> statement appears in a specific cross-reference, that cross-reference is part of a
text inset that retains formatting information from the source document. The cross-reference is not
affected by global formatting performed on the document.

If the <XRef Locked No> statement appears in a specific cross-reference, that cross-reference is not part
of a text inset, or is part of a text inset that reads formatting information from the current document. The
cross-reference is affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference),” next.

Text insets (text imported by reference)

In a FrameMaker document, text can be imported by reference from another file. When the text in the
original file is modified, the imported text in the FrameMaker document is updated with changes. Text
imported by reference is called a text inset. In a MIF file, text insets are defined by the Text I nset
statement.

A Text | nset statement appears in the Par aLi ne statement representing the location of the text being
imported. When text is imported by reference, the resulting text inset can be formatted either as regular
text or as a table.

The source file (from which the text is imported) can be a FrameMaker document or any other kind of text
file. The source file can also be a file that is created, maintained, and updated by an FDK client (a program
created with the Frame Developer’s Kit.

On Macintosh platforms, the source file can also be a published edition. In this case, text can be imported
by reference by subscribing to the edition.

Textlnset statement

The Text I nset statement defines text that has been imported by reference. A Text | nset statement
appears in a Par aLi ne statement.

Syntax
<Text | nset
<Uni que num> Unique ID number assigned by the FrameMaker product
<Ti Nanme string> Specifies a name for the text inset that may be assigned
by an FDK client or by this statement in a MIF file;
FrameMaker products do not automatically assign a
name for the text inset
<Ti SrcFil e pathname> Specifies the source file with a device-independent file-
name (for pat hname syntax, see page 13)
<Ti Aut oUpdat e boolean> Yes specifies that the text inset is updated automatically
when the source file changes

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Ti Last Updat e seconds microseconds>

Specifies the time when the text inset was last updated,;
time is measured in the number of seconds and microsec-
onds that have passed since January 1, 1970

<Ti MacEdi ti onl d integer>

For a text inset created from a Macintosh edition, points
to the resource ID of the sect and al i s records

<Ti I nport Hi nt string>

Identifies the filter used to convert the file (see “Record
of the filter used to import text”” on page 150)

<TiApiClient .>

Identifies the text inset as one created and maintained by
an FDK client (see “TiApiClient statement” on page 152)

<Ti Fl ow ..> Identifies the text inset as an imported text flow from
another document (see “TiFlow statement™ on
page 152)

<Ti Text ..> Identifies the text inset as an imported text file (see

“TiText statement” on page 154)

<Ti Text Tabl e ..»

Identifies the text inset as text imported into a table (see
“TiTextTable statement™ on page 154)

End of Text | nset statement

..(Free-formtext)

Par a statements containing and describing the
imported text (see “Para statement” on page 141)

<Text | nset End>

End of imported text

Usage

All text insets require information about the source file and the imported text. The information is used to
update the text inset when changes are made to the original file.

There are several different types of text insets. The type of the text inset is identified and described by a

substatement:

- Text created and maintained by an FDK client is described by the Ti Api Cl i ent substatement. For infor-
mation on the statement, see the section “TiApiClient statement” on page 152.

= A text flow imported from another FrameMaker document or from a document filtered by a
FrameMaker product is described by the Ti FI owsubstatement. For information on the statement, see the

section “TiFlow statement” on page 152.

- Plain text imported by reference is described by the Ti Text substatement. For information on the
statement, see the section “TiText statement” on page 154.

- Text imported into a tabular format is described by the Ti Text Tabl e substatement. For information
on the statement, see the section “TiTextTable statement” on page 154.

Usage of some of the aspects of the Text | nset statement is described in the following sections.

Text insets created with Publish and Subscribe

Macintosh versions of FrameMaker products support text and graphics Publish and Subscribe, which
allows applications to share information dynamically between FrameMaker documents.

149

ADOBE FRAMEMAKER 6.0 |150
MIF Document Statements

You make text and graphics information available by creating a publisher. This creates a separate file, called
anedition, on disk. You can place a copy of the edition, called a subscriber, in a document, even if the edition
is on another disk or on another Macintosh on a network.

In MIF, subscribers and publishers are described by different statements.

= Subscribers to text editions are described by Text | nset statements.

= Subscribers to graphics editions are described by | npor t Cbj ect statements (see “ImportObject
statement” on page 128).

= Publishers are described by Dat aLi nk statements (see “Publishers” on page 156).

If a text inset is created by subscribing to an edition, the Ti MacEdi t i onl d statement provides infor-
mation for compatibility with Macintosh standards; i nt eger points to the resource ID for the sect and
al i s resources in the resource fork. This information is replicated inside the MIF description, but the
information in the resource fork takes precedence over the MIF data. If this field is missing, it uses the
filename specified in the Ti Sr cFi | e statement. For more information, see the chapter on Edition
Manager in Inside Macintosh, Volume VI.

If the source document for a text inset is not an edition, the Ti MacEdi t i onl d statement is set to 0.

Record of the filter used to import text

The Text | nset statement contains a record to identify the filter that was used to import text by reference.
FrameMaker products use the record to find the correct filter to use when updating the text inset.

The record is specified in the Ti | npor t Hi nt statement and uses the following syntax:

record_vers vendor format_id platformfilter_vers filter_name

Note that the fields in the record are not separated by spaces. For example:

" 0001 XTNDWDBNMACPOO02MS Word 4, 5°

In this example, 0001 is the record version; XTNDis the vendor; WDBN s the format id; MACP is the platform;
0002 is the filter version; and M5 Wor d 4, 5 is the filter name. The rest of this section describes each field
in the record.

record_ver s is the version on the record (for example, 0001).

vendor is a code specifying the filter’s vendor. The code is a string of four characters. The following table
lists some of the possible codes.

Code Description

" PGRF' Built-in FrameMaker filters

" FAPI! External FDK client filter

" FFLT External FrameMaker filters
“ I MAG External ImageMark filters

" XTND' External XTND filters

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by devel-

opers at your site.

format _i d is a code specifying the format that the filter translates. The code is a string of four characters.

The following table lists some of the possible codes.

Code Description

* WDBN Microsoft Word compound document
* WPBN WordPerfect compound document
TRTF ! Microsoft’s RTF compound document
AR Interleaf compound document
"MF Maker Interchange Format

©MRTF MIF to RTF export

M AF MIF to IAF export

* MAPB' MIF to WordPerfect export

" TRFF' trof f to MIF (UNIX only)

" TRFA troff -man to MIF (UNIX only)

" TRFE' troff -nme to MIF (UNIX only)

" TRFS' troff -ns to MIF (UNIX only)
MWL Maker Mark-up Language

* CVBN Corel Ventura compound document (Windows)
"DCA ' DCA to MIF (UNIX)

T TEXT Plain text

TTXI S Text ISO Latin 1

" TXRM Text Roman 8

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by devel-

opers at your site.

pl at f or mis a code specifying the platform on which the filter was run. The code is a string of four

characters. The following table lists some of the possible codes.

Code Description
" MACE' Macintosh 68000 series
* MACP' Power Macintosh

W NT' Windows NT

151

ADOBE FRAMEMAKER 6.0
MIF Document Statements

Code Description

"W N3 Windows 3.1

"W N4 Windows 95

“UNI X Generic X/11 (Sun, HP)

filter_vers isastring of four characters identifying the version of the filter on that platform. For
example, version 1.0 of a filter is represented by the string~ 1. 0 ' .

filter_name isa text string (less than 31 characters long) that describes the filter.

TiApiClient statement

The Ti Api O i ent statement defines a text inset created and maintained by an FDK client application.

Syntax

<Ti Api C i ent

<Ti d i ent Nane string>

Specifies the name used to register the FDK client application with
the FrameMaker product

<Ti d i ent Sour ce string>

Specifies the location of the source file for the text inset

<Ti d i ent Type string>

Specifies the type of the source file

<Ti dientData string>

Specifies additional data that can be used by an FDK client (for
example, SQL query information)

End of Ti Api Cl i ent statement

Usage

When updating text insets, the FDK client can use the Ti d i ent Nane substatement to determine if it

should update a given text inset.

If the FDK client requires additional information, the client can store the information inthe Ti O i -
ent Dat a substatement. For example, if the FDK client queries a database for text, the SQL query can be
stored in the Ti d i ent Dat a substatement.

TiFlow statement

The Ti FI owstatement defines a text flow that is imported by reference from a FrameMaker document or
a MIF file. The statement also defines imported text from other formatted documents that FrameMaker
products can filter (for example, a Microsoft Word document).

152

Syntax

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Ti Fl ow

<Ti Formatti ng keyword>

Specifies which document formats are used for the text
inset

keywor d can be one of:
Ti Sour ce

Ti Encl osi ng

Ti Pl ai nText

<Ti Mai nFl ow boolean>

Yes specifies that the text inset is imported from the
main flow of the source document; No specifies that the
text inset is imported from a different flow

<Ti PageSpace keyword>

If the text inset is not imported from the main flow, spec-
ifies whether the text inset is imported from a flow in the
body page or the reference page of the source document

keywor d can be one of:
BodyPage
Ref er encePage

<Ti Fl owName string>

If the text inset is not imported from the main flow, spec-
ifies the tag of the flow to import; if the source file is an
edition, set to ~ Maci nt osh edition'

<Ti For mat RenoveOverri des boolean>

When reformatting to use the current document’s for-
mats, Yes specifies that format overrides are removed

<Ti For mat RenovePageBr eaks boolean>

When reformatting to use the current document’s for-
mats, Yes specifies that manual page breaks are
removed

End of Ti FI ow statement

Usage

If the imported text flow is not the main flow of the source document, the Ti PageSpace and Ti Fl owNane
substatements identify the flow in the source document that serves as the imported text flow.

Text imported from another document can obtain formatting information from the original document (if
the Ti For mat t i ng statement is set to Ti Sour ce) or from the current document (if the Ti For mat ti ng

statement is set to Ti Encl osi ng):

- If the imported text flow is reformatted to use the current document’s formats, the Ti For mat Renove-
Overri des substatement specifies whether or not format overrides in the text are removed, and the
Ti For mat RenpvePageBr eaks substatement specifies whether or not manual page breaks in the text are

removed.

153

ADOBE FRAMEMAKER 6.0 |154
MIF Document Statements

- If the imported text flow retains the formatting of the source document, the paragraph, character, table,
variable, and cross-reference formats used in the inset are marked with special MIF statements to indicate
that these formats should not be affected by global updates. These statements are Pgf Locked, FLocked,
Tbl Locked, Vari abl eLocked, and XRef Locked, respectively. The MIF statements appear under the
descriptions of these formats.

Plain text formatting can also be used, if the Ti For mat t i ng statement is set to Ti Pl ai nText .

TiText statement
The Ti Text statement defines a text file imported by reference. It appears in a Text | nset statement.

Syntax

<Ti Text

<Ti EOLi SEOP boolean> Yes specifies that the end of the line marks the end of a paragraph;
No specifies that a blank line identifies the end of a paragraph

<Ti Txt Encodi ng keywor d> Specifies the text encoding for the source file

keywor d can be one of:
Til soLatin
Ti ASCI |

Ti ANSI

Ti MacASCl |
TiJIs

Ti ShiftJI' S
Ti EUC

Ti Bi g5

Tl EUCCNS
Ti GB

Ti HZ

Ti Kor ean

> End of Ti Text statement

TiTextTable statement

The Ti Text Tabl e statement defines imported text formatted as a table. It appears in a Text | nset
statement.

Syntax

<Ti Text Tabl e

<Ti Thl Tag string> Specifies the name of the table format used for the table

<Ti Tbl | sByRow boolean> Yes specifies that each paragraph in the imported text is
converted to a row of table cells; No specifies that each
paragraph in the imported text is converted to a table cell

ADOBE FRAMEMAKER 6.0
MIF Document Statements

<Ti Tbl NunCol s num> If each paragraph is converted to a separate cell, specifies
the number of columns in the table

<Ti Tbl Sep string> If each paragraph is converted to a row of cells, specifies
the character used to indicate the contents of each cell

<Ti Tbl NunmSep nune If characters are used to indicate the contents of each cell,
specifies the number of these characters used as a single
divider

<Ti Tbl NumHdr Rows nun» Specifies the number of heading rows in the table

<Ti Tbl Header sEnpt y boolean> Yes indicates that the imported text is not inserted in the

heading rows

<Ti Tbl Txt Encodi ng keywor d> Specifies the text encoding for the source file

keywor d can be one of:
TilsoLatin
Ti ASCl |

Ti ANSI

Ti MacASCl |
TiJIS

Ti ShiftJIS
Ti EUC

Ti Bi g5

TI EUCCNS
Ti GB

Ti HZ

Ti Kor ean

> End of Ti Text Tabl e statement

Usage
When imported text is converted to a tabular format, each paragraph can be converted into either a cell or
a row of cells:

- If each paragraph is converted to a table cell, the Ti Thl | sBy Rowsubstatement is set to No. The number
of columns in the table is specified by the Ti Thl NunCol s substatement.

- If each paragraph is converted to a row of cells, the Ti Tbl | sBy Row substatement is set to Yes. The
character used in the imported text to delimit the contents of each cell is specified by the Ti Tbl Sep
substatement, and the number of these characters used as a single divider is specified by the Ti Tbl NunSep
substatement.

- For example, if the imported text uses a single tab character to distinguish the contents of one table cell
from the next, the following substatements are used:

<Ti Thl Sep "\t'>
<Ti Tbl NunSep 1>

- Asanother example, if the imported text uses two spaces to distinguish the contents of one table cell from
the next, the following substatements are used:

<Ti Tbl Sep = '>

155

ADOBE FRAMEMAKER 6.0 | 156
MIF Document Statements

<Ti Tbl NunSep 2>

If the Ti Thl NurmHdr Rows substatement is not set to 0, the table has header rows. If the Ti Tbl Header -
sEnpt y substatement is set to No, these rows are filled with imported text.

Publishers

Macintosh versions of FrameMaker products support text and graphics Publish and Subscribe, which
allows applications to share information dynamically between FrameMaker documents. You can make text
information available by designating it a publisher. A separate file, called an edition, is created on disk. You
can place a copy of the edition, called a subscriber, in a document, even if the edition is on another disk or
on another Macintosh on a network.

FrameMaker products treat subscribed text as text insets. Subscribed text is specified through the
Text | nset statement. Published text is specified through a different MIF statement, the Dat aLi nk
statement.

For more information on subscribers and text insets, see “Text insets (text imported by reference)” on
page 148.

Datalink Statement

The Dat aLi nk statement defines a text publisher. It is embedded along with the lines of text where the link
occurs. The Dat aLi nk statement occurs in a Par aLi ne statement.

Syntax
<Dat aLi nk
<DLSour ce pathname> Specifies the edition with a device-independent filename
<DLCQut Yes> Yes specifies that the statement describes a publisher
<OnelLi nePer Rec bool ean> Yes treats returns as paragraphs (one line per paragraph);
No treats returns as line breaks
<MacEdi tion integer> Points to the resource ID of the sect and al i s records
> Ends the Dat aLi nk statement
..(Free-formtext) Par a statements containing and describing the published
text (see “‘Para statement” on page 141)
<Dat aLi nkEnd> End of the published text
Usage

The MacEdi t i on statement provides information for compatibility with Macintosh standards for creating
edition manager documents; i nt eger points to the resource ID for the sect and al i s resources in the
resource fork. This information is replicated inside the MIF description, but the information in the

resource fork takes precedence over the MIF data. If this field is missing, the MacEdi t i on statement uses

ADOBE FRAMEMAKER 6.0 |157
MIF Document Statements

the filename in the DLSour ce statement. For more information, see the chapter on Edition Manager in
Inside Macintosh, Volume V1.

158

MIF Book File Statements

MIF book file overview

The following table lists the main statements in a MIF book file in the order that a FrameMaker product
writes them. You should follow the same order that a FrameMaker product uses, with the exception of the

macro statements and control statements, which can appear anywhere at the top level of a file. Each
statement, except the Book statement, is optional. Most main statements use substatements to describe

objects and their properties.

Section

Description

Book

Labels the file as a MIF book file. The Book statement is required and
must be the first statement in the file.

Macro statements

Defines macros with a def i ne statement and reads in files with an
i ncl ude statement. These statements can appear anywhere at the top
level.

Control statenents

Establishes the default units in a Uni t s statement, the debugging set-
ting in a Ver bose statement, and comments in a Conment statement.
These statements can appear anywhere at the top level.

BW ndowRect

Specifies position of book window on the screen.

View only statenments

Specify whether the book is View Only, and how to display View Only
book windows

BDi spl ayText

Specifies the type of text to display in the book window for each book
component icon

PDF statenents

Specify document info entries and how to handle named destinations
when you save the book as PDF

BookConponent

Provides the setup information for each file in the book.

Col or Cat al og

The color definitionss of each document in the book.

Condi ti on Cat al og

Defines the condition tags of each document in the book.

Conbi ned Font Catal og

Defines the combined fonts of each document in the book.

Font Cat al og Defines the character formats of each document in the book. The
Font Cat al og statement contains a series of Font statements that
define the tags that appear in the Character Catalog of generated files.

Pgf Cat al og Defines the paragraph formats of each document in the book. The

Pgf Cat al og statement contains a series of Pgf statements that
define the tags that appear in the Include and Don’t Include scroll lists
of the setup dialog boxes for generated files.

ADOBE FRAMEMAKER 6.0
MIF Book File Statements

Section Description

Book XRef Names and defines the book’s internal cross-references. The Book XRef
statement contains cross-reference definitions in XRef Def statements,
cross-reference text in XRef Sr cText statements, and the source file-
name in XRef Sr cFi | e statements.

BookUpdat eRef er ences Specifies whether or not cross-references and text insets are automati-
cally updated when the book file is opened.

MIF book file identification line
The MIF book file identification line must be the first line of the file with no leading white space.

Syntax

<Book version> # comment

The ver si on argument indicates the version number of the MIF language used in the file, and comrent is
a comment showing the name and version number of the program that generated the file.

For example, a MIF book file saved in version 6.0 of FrameMaker begins with the following line:

<Book 6.00> # Generated by version 6.0 of FrameMaker
MIF is compatible across versions, so a MIF interpreter should be able to parse any MIF file, although the
results can sometimes differ from the user’s intentions.

A MIF book file identification line is the only statement required in a MIF book file.

Book statements

A MIF file for a book contains statements specific to books (BW ndowRect , Book Conponent , Book XRef ,
and BookUpdat eRef er ences), plus the following statements, which can also occur in a MIF file for a
document: Comment , Uni t s, Ver bose, Pgf Cat al og, and Font Cat al og, Col or Cat al og, and Condi -
tionCat al og.

BWindowRect statement

The BW ndowRect statement defines the position of the book window on the screen. It can appear
anywhere in the file but normally appears just after the Book statement.

Syntax

<BW ndowRect X Y W H> Book window placement on screen

159

ADOBE FRAMEMAKER 6.0
MIF Book File Statements

PDF statements

The PDFBook| nf o statement specifies the information to include in the Document Info dictionary when
you save the book as PDF. Each data entry consists of one Key statement, followed by at least one Val ue
statement; you can include as many Val ue statements as you like. The FrameMaker product ignores any
Key that does not have at least one Val ue following it. MIF does not represent entries for Cr eat or,
Creation Date,or Mbdi fication Date.

For additional information and an example of the syntax for the Key and Val ue statements, see “PDF
Document Info” on page 99

Syntax

<PDFBookl nf o Specifies the information that appears in the Document Info dictionary when you save
the book as PDF

Each Document Info entry consists of one Key statement followed by at least one
Val ue statement.

<Key string> A string of up to 255 ASCII characters that represents the name of a Document Info
field; in PDF the name of a Document Info field must be 126 characters or less.

Represent non-printable characters via #HH, where # identifies a hexadecimal represen-
tation of a character, and HH is the hexadecimal value for the character. For example,
use #23 to represent the “#” character. Zero-value hex -codes (#00) are illegal.

For more information, see ““PDF Document Info” on page 99.

<Val ue string> A string of up to 255 ASCII characters that represents the value of a Document Info
field; because a single MIF string contains no more than 255 ASCII characters, you can
use more than one Val ue statement for a given Key

A Value can include Unicode characters; represent Unicode characters via &#x HHHH; ,
where &#x opens the character code, the *“; ”” character closes the character code,
and HHHH are as many hexadecimal values as are required to represent the character.

For more information, see ““PDF Document Info” on page 99.

You can repeat paired groupings of Key and Val ue statements

> End of PDFBook| nf o statement

View only book statements

In versions 6.0 and later, a book can be View Only. The following statements indicate whether the book is
View Only, and how to display the book window when it is View Only.

Syntax
<BVi ewOnl y bool ean> Yes specifies View Only book (locked)
<BVi ewOnl yW nBor der s bool ean> No suppresses display of scroll bars and border buttons in

book window of View Only book

160

ADOBE FRAMEMAKER 6.0 |161
MIF Book File Statements

<BVi ewOnl yW nMenubar bool ean> No suppresses display of book window menu bar in View
Only book (Unix only)

<BVi ewOnl yPopup bool ean> No suppresses display of book context menus in View Only
book

<BVi ewOnl yNoOp Oxnnn> Disables a command in a View Only document; command is

specified by hex function code (see page 59)

BDisplayText statement

The BDi spl ayText statement defines the the type of text to display in the book window next to the book
component icons. It can appear anywhere in the file but normally appears just after the book’s View Only
statements.

Syntax

<BDi spl ayText keyword> The type of text to display next to component icons in the
book window; keywor d can be one of:

AsFi | enane; displays the filename of the book component
in the book window.

AsText ; displays a text snippet from the first paragraph of
the component in the book window

BookComponent statement

The BookConponent statement contains the setup information for a document or generated file in a
book. The BookConponent statements must precede all other statements that represent book content.
The order of BookConponent statements determines the order of the documents in the book.

You specify the setup information as substatements nested within the overall book component statement.
A BookConponent statement doesn’t need all these substatements, which can occur in any order. A
BookConponent statement can contain one or more Der i veTag statements.

Syntax
<BookConponent Book components
<Fi | eNane pat hname> A document or generated file in the book (for pathname syn-
tax, see page 13)
<Di spl ayText string> The text to display in the book window next to the icon for

this component; the FrameMaker product displays this text
when BDi spl ayText issetto AsText (see “<BDisplayText
keyword>"" on page 161)

Generated components

<Fi | eNaneSuffix string> Filename suffix added to generated file

ADOBE FRAMEMAKER 6.0
MIF Book File Statements

<DeriveType keyword>

Type of generated file

keywor d can be one of:
AM_ (alphabetic marker list)
APL (alphabetic paragraph list)
I DX (index)

| OA (author index)

| OM(index of markers)

| OS (subject index)

| R (index of references)
LOF (list of figures)
LOM(list of markers)

LOP (list of paragraphs)
LOT (list of tables)

LR (list of references)

TOC (table of contents)

S~~~ —

<DeriveTag tagstring>

Tags to include in generated file

<Deri veli nks bool ean>

Yes automatically creates hypertext links in generated files

Book component pagination and numbering properties

<St art PageSi de keywor d>

The page side on which to start

keywor d can be one of:
ReadFr onFi | e (default)
Next Avai | abl eSi de
StartLeftSide

Start Ri ght Si de

Volume numbering

<Vol uneNunst art integer>

Starting volume number

<Vol uneNunst yl e keywor d>

Style of volume numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAI pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<Vol umeNunTText stri ng>

When Vol umeNuntt yl e is set to Cust om this is the string

to use

162

ADOBE FRAMEMAKER 6.0
MIF Book File Statements

<Vol NumConput eMet hod keywor d>

Volume numbering

keywor d can be one of:

St art Nunber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous
component)

UseSaneNunber i ng (use the same numbering as previous
component)

ReadFr onFi | e (use numbering set for the component’s
document)

Chapter numbering

<ChapterNuntStart integer>

Starting chapter number

<Chapt er Nunst yl e keywor d>

Style of chapter numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha

Kanj i Nurreri c
ZenAr abi c
ZenUCAI pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<Chapt er Nunrext string>

When Chapt er Nuntst yl e is set to Cust om this is the
string to use

<Chapt er NunConput eMet hod keywor d>

Chapter numbering

keywor d can be one of:

St art Nunber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous
component)

UseSaneNunber i ng (use the same numbering as previous
component)

ReadFr onFi | e (use numbering set for the component’s
document)

Page numbering

<Cont PageNum bool ean>

Yes continues page humbering from the previous file in the
book

<PageNunttart integer>

Starting page number

163

ADOBE FRAMEMAKER 6.0
MIF Book File Statements

<PageNunttyl e keyword>

Style of page numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRonman

UCAl pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAI pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu

<PageNunberi ng keywor d>

Page numbering

keyword can be one of:
Cont i nue (default)
Rest art

ReadFronFi |l e

Paragraph numbering

<Pgf Numberi ng keywor d>

Paragraph numbering

keyword can be one of:
Cont i nue (default)
Rest art

ReadFrontFi | e

Footnote numbering

<BFNot eSt ar t Num i nt eger >

Starting number for footnote numbering

<BFNot eNuntt yl e keywor d>

Style of footnote numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha

Kanj i Nuneric
ZenAr abi ¢
ZenUCAI pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<BFNot eLabel s string>

When BFNot eNunst yl e is set to Cust om this is the string
to use

164

ADOBE FRAMEMAKER 6.0
MIF Book File Statements

<BFNot eConput eMet hod keywor d>

Footnote numbering

keywor d can be one of:

Cont i nue (continue numbering from previous component
in book)

Rest art (restart numbering; typically to restart per flow,
according to BFNot eRest ar t setting)

Per Page (restart footnote numbering for each page; over-
rides BFNot eRest art setting)

ReadFr onFi | e (use numbering set for the component’s
document)

<BFNot eRest art keywor d>

When to restart numbering, if BFNot eConput eMet hod is
setto Rest art

keywor d can be one of:

Per FI ow (restart footnote numbering for each flow in the
document

Per Page (restart footnote numbering for each page)

Table footnote numbering

<BTbl FNot eNuntt yl e keywor d>

Style of table footnote numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAI pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<BTbl FNot eLabel s stri ng>

When BTbl FNot eNunt yl e is set to Cust om this is the
string to use

<BTbl FNot eConput eMet hod keywor d>

Table footnote numbering; either value causes the compo-
nent to read the numbering style from its document

keywor d can be one of:

Rest art (use numbering style specified in the component)
ReadFr onFi | e (use numbering style set for the compo-
nent’s document)

Book component defaults

<Def aul t Pri nt bool ean>

Yes adds file to Print scroll list in Print Files in Book dialog box
(file is printed); saved for compatibility with versions earlier
than 6.0

165

ADOBE FRAMEMAKER 6.0
MIF Book File Statements

<Def aul t Appl y bool ean>

Yes adds file to Update scroll list in the Import Formats dialog
box (file is updated); saved for compatibility with versions ear-
lier than 6.0

<Def aul t Deri ve bool ean>

Yes adds file to Generate scroll list in the Generate/Update
Book dialog box

<NurPages i nt eger >

The number of pages in the components document, as calcu-
lated the last time the book was updated

End of BookComponent statement

BookXRef statement

The BookXRef statement defines the cross-reference formats for the book.

Syntax

<Book XRef

<XRef Def string>

Cross-reference format definition

<XRef SrcText string>

Text for which to search

<XRef Sr cl sél em bool ean>

Yes means the source of the cross-reference is an element
from a structured document

<XRef Sr cFi |l e pat hname>

File in which to search for source text (for pat hname syntax,
see page 13)

End of Book XRef statement

BookUpdateReferences statement

The BookUpdat eRef er ences statement specifies whether or not cross-references and text insets are
automatically updated when the book file is opened.

Syntax

<BookUpdat eRef er ences bool ean>

Yes specifies that cross-references and text insets are
automatically updated when the book file is opened

166

‘167

MIF Statements for Structured Documents
and Books

This chapter describes the MIF statements that define structured documents created with
FrameMaker+SGML. For more information about creating and editing structured documents, see the
FrameMaker+SGML User Guide.

Structural element definitions

A structured document created in FrameMaker+SGML is divided into logical units called structural
elements. Elements have tags (or names) that indicate their role in the document. For example, a document
might contain Section, Para, List, and Item elements. Each element has a definition that specifies its valid
contents (such as text and graphics). A structured template specifies a document’s elements, and the
correct order of elements and text in the document.

There are two basic groups of FrameMaker+SGML elements:

- Containers, tables and footnotes, which can hold text and other elements.

= Object elements, such as graphic frames, equations, markers, system variables, and cross-references. An
object element holds one of its specified type of object and nothing more.

Tables belong to both groups of elements. Although they can contain other elements (table parts such as
rows and cells), tables are also object elements.

Ina MIFfile, an element definition is defined by an El enment Def statement. Element definitions are stored
in the Element Catalog, which is defined by the EI enent Def Cat al og statement. Within a text flow,
elements are indicated by El ement Begi n and El ement End statements.

When FrameMaker products read a MIF file that does not support structure, they strip MIF statements for
structure, such as El ement Begi n, El enent End, and El ement Def Cat al og Statements.

ElementDefCatalog statement

The El enment Def Cat al og statement defines the contents of the Element Catalog. A document or book
file can have only one El enent Def Cat al og statement which must appear at the top level in the order
given in “MIF file layout” on page 17.

Syntax

<El enent Def Cat al og Begin Element Catalog
<El enent Def ..> Defines an element (see “ElementDef statement,” next)
<El ement Def ..> Additional statements as needed

> End of El enent Def Cat al og statement

ElementDef statement

The El enent Def statement creates an element definition, which specifies an element’s tag name, content

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

rules, and optional format rules. It must appear within an El enment Def Cat al og statement.

Syntax

<El enent Def

Begin element definition

<EDTag tagstring>

Element tag name

<EDObj ect keywor d>

Type of formatter object represented by the element

keywor d can be one of:
EDCont ai ner
EDEquat i on
EDFoot not e

EDGr aphi c

EDMar ker

EDTabl e

EDTbl Titl e

EDTbI Headi ng
EDTbI Body

EDTbl Foot i ng
EDTbl Row

EDTbI Cel |

EDSyst enVari abl e
EDXRef

EDCont ai ner identifies a container element; all other
values identify object (non-container) elements

<EDVal i dHi ghest Level bool ean>

Yes indicates element can be used as the highest level
element for a flow; only a container element is allowed to
be the highest level element

<EDGener al Rul e string>

The general rule for the element; the following types of

elements can have general rules: containers, tables, table
parts (table titles, headings, bodies, footings, rows, and

cells), and footnotes

<EDExcl usi ons

List of excluded elements

<Excl usi on tagstring>

Tag of excluded element

<Excl usi on tagstring>

Additional statements as needed

>

End of EDExcl usi ons statement

<EDI ncl usi ons

List of included elements

<l ncl usi on tagstring>

Tag of included element

<l ncl usi on tagstring>

Additional statements as needed

168

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

>

End of EDI ncl usi ons statement

<EDAl sol nsert

List of elements that are automatically inserted in a con-
tainer element when the element is initially added

<Al sol nsert tagstring>

Tag of inserted element

<Al sol nsert tagstring>

Additional statements as needed

>

End of EDAI sol nsert statement

<EDI niti al Tabl ePattern string>

List of the tags of table child elements that are automati-
cally created when a table is inserted

Valid only if EDObj ect is one of the following:
EDTabl e

EDTbl Headi ng

EDTbl Body

EDTbI Foot i ng

EDTbl Row

EDTbI Cel |

<EDAttrDefinitions

List of attribute definitions

<EDAt t r Def ..>

Definition of attribute (see “Attribute definitions™ on
page 170)

<EDAt t r Def ..>

Additional statements as needed

>

End of EDAttrDefinitions statement

<EDPgf For mat string>

Paragraph format of the element

<EDText For mat Rul es..>

See “EDTextFormatRules statement” on page 172

<EDObj ect For mat Rul es..>

See “EDObjectFormatRules statement” on page 173

<EDPr ef i xRul es..>

See “EDPrefixRules statement” on page 173

<EDSuf fi xRul es..>

See “EDSuffixRules statement™ on page 174

<EDSt art El ement Rul es..>

See “EDStartElementRules statement” on page 174

<EDENndEl enent Rul es..>

See “EDEndElementRules statement” on page 175

<EDComment s string>

Comments for the element definition

>

End of El enent Def statement

Usage

The element name can contain any characters from the FrameMaker character set except the following:

() &l »+?2<>%[]

’

{1}

169

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

Content rules

The content rule for a container element consists of the following statements:

= Arequired <EDObj ect EDCont ai ner > statement specifies the element type.

- Arequired EDGener al Rul e statement specifies what the element can contain and in what order the
element’s contents can appear.

- An optional EDExcl usi ons statement specifies elements that cannot appear in the defined element or
in its descendents.

= An optional EDI ncl usi ons statement specifies elements that can appear anywhere in the defined
element or in its descendents.

The general rule specification must follow the conventions for data in a MIF string. If a general rule
contains angle brackets (<>), the right angle bracket must be preceded by a backslash in the MIF string.
For example, an element that can contain text might have the following general rule:

<EDGener al Rul e "~ <TEXT\ >' >

If you don’t provide a general rule statement for a container element, the MIF interpreter applies the
default rule <ANY>. The rule means that any element or text is allowed.

The following general rule describes an element that must contain at least one element named Item.

<El enent Def
<EDTag "Bul l etList'>
<EDVal i dHi ghest Level No >
<EDGeneral Rul e “Itemt' >
<EDObj ect EDCont ai ner >
> # end of El enment Def
For more information about content rules, see the online manual FrameMaker+SGML Developer’s Guide.

Attribute definitions

Element definitions can specify attribute definitions, which describe attributes (information stored with an
element other than its content). The definition of an attribute can specify that the attribute is required for
all elements with the element definition. It can also provide a list of the values the attribute can have and a
default value.

EDAttrDef statement

The EDAt t r Def statement defines the formatting properties to be applied to a container, table, table child,
or footnote element in different contexts. It must appear in an El ement Def statement.

Syntax

<EDAt t r Def Begin attribute definition

<EDAt t r Nanme string> Attribute name

170

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<EDAt tr Type keyword>

Attribute type

keywor d can be one of:

FAt t r Choi ce: a value from a list of choices

FAtt rl nt : asigned whole number (optionally restricted
to a range of values)

FAttr | nts: one or more integers (optionally restricted
to a range of values)

FAt t r Real : a real number (optionally restricted to a
range of values)

FAt t r Real s: one or more real numbers (optionally
restricted to a range of values)

FAttr String: an arbitrary text string

FAttr Strings: one or more arbitrary text strings

FAt t r Uni quel d: a string that uniquely identifies the
element

FAtt r Uni quel dRef : a reference to a UniquelD
attribute

FAt t r Uni quel dRef s: one or more references to a
UniquelD attribute

<EDAt t r Requi r ed bool ean>

Yes means the attribute is required

<EDAt t r ReadOnl y bool ean>

Yes means the attribute is read-only

<EDAt tr H dden bool ean>

Yes means the attribute is hidden and will not appear in
the Structure view or in the Edit Attributes dialog box

<EDAt t r Choi ces

The choices, if the attribute type is FAt t r Choi ce

<EDAt t r Choi ce string>

A choice

<EDAt t r Choi ce string>

Additional statements as needed

>

End of EDAttr Choi ces statement.

<EDAt t r Def Val ues

The default if the attribute is not required. If the attribute
typeis FAttrints, FAttrReal s,FAttrStrings,or
FAtt r Uni quel dRef s, the default can have multiple
strings

<EDAt t r Def Val ue string>

A default value

<EDAt t r Def Val ue string>

Additional statements as needed

>

End of EDAttr Def Val ues statement

<EDAt t r Range

Range of values the attribute is allowed to have

<EDRangeStart string>

The minimum value the attribute must have

<EDRangeEnd string>

The maximum value the attribute must have

>

End of EDAtt rRange statement

171

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

> End of EDAttr Def statement

Format rules

Format rules allow the template builder to specify the format of an element in specific circumstances. A
format rule can be either a context rule or a level rule.

A context rule contains clauses that specify an element’s formatting based on its parent and sibling
elements. For example, one clause of a format rule could specify that a Para element has the FirstBody
paragraph format if it is the first child of a Heading element. Another clause could specify that a Para
element has the Body paragraph format in all other contexts.

A level rule contains clauses that specify an element’s formatting on the basis of the level to which it is
nested within specific types of ancestor elements. For example, one clause of a level rule could specify that
a Para element appears in 12-point type if it has only one Section element amonyg its ancestors. Another
clause could specify that a Para element appears in 10-point type if there are two Section elements among
its ancestors.

Element definitions contain format rules grouped into the following statements:
- EDText For mat Rul es

- EDObj ect For mat Rul es

- EDPrefi xRul es

e EDSuf fi xRul es

EDSt art El ement Rul es

 EDEndEl enent Rul es

EDTextFormatRules statement

The EDText For mat Rul es statement defines the formatting properties to be applied to a container, table,
table child, or footnote element in different contexts. It must appear in an El ement Def statement. An
EDText For mat Rul es statement can contain zero or more substatements describing level and context
format rules.

Syntax
<EDText For mat Rul es Any combination of level and context format rules
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on
page 176)
<Cont ext For mat Rul e..> A context format rule (see “ContextFormatRule statement”
on page 175)
<Cont ext For mat Rul e..> Additional context format rule statements as needed

<Level For nat Rul e..> Additional level format rule statements as needed

172

ADOBE FRAMEMAKER 6.0 (173
MIF Statements for Structured Documents and Books

> End of EDText For mat Rul es statement

EDObjectFormatRules statement

The EDObj ect For mat Rul es statement defines the formatting properties to be applied to a table, cross-
reference, system variable, marker, graphic, or equation element in different contexts. It must appear in an
El emrent Def statement.

An EDObj ect For mat Rul es statement can contain a single level format rule or a single context format
rule.

Syntax
<EDObj ect For mat Rul es Begin object format rules (a single level format rule or a single
context format rule)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on
page 176)
> End of EDObj ect For mat Rul es statement
or
<EDObj ect For mat Rul es
<Cont ext For mat Rul e..> A context format rule (see “ContextFormatRule statement”
on page 175)
> End of EDObj ect For mat Rul es statement

EDPrefixRules statement

A prefix is a fixed text range that appears at the beginning of an element (before the element’s content). The
EDPr ef i xRul es statement defines the formatting properties to be applied to a prefix in different contexts.
It must appear in an El enment Def statement. It is valid only for container elements.

An EDPr ef i xRul es statement can contain zero or more substatements describing level and context
format rules.

Syntax
<EDPr ef i xRul es Begin prefix rules (any combination of level and context format rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on page 176)
<Cont ext For mat Rul e..> A context format rule (see “ContextFormatRule statement” on
page 175)
<Cont ext For mat Rul e..> Additional context format rule statements as needed
<Level For mat Rul e..> Additional level format rule statements as needed

ADOBE FRAMEMAKER 6.0 (174
MIF Statements for Structured Documents and Books

> End of EDPrefi xRul es statement

EDSuffixRules statement

Assuffix is a fixed text range that appears at the end of an element (after the element’s content). The EDSuf -
fi xRul es statement defines the formatting properties to be applied to a suffix in different contexts. It
must appear in an El enent Def statement. It is valid only for container elements.

An EDSuf f i xRul es statement can contain zero or more substatements describing level and context
format rules.

Syntax
<EDSuf fi xRul es Begin suffix rules (any combination of level and context format
rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement™ on
page 176)
<Cont ext For nat Rul e..> A context format rule (see “ContextFormatRule statement” on
page 175)
<Cont ext For nat Rul e..> Additional context format rule statements as needed
<Level For mat Rul e..> Additional level format rule statements as needed
> End of EDSuffi xRul es statement

EDStartElementRules statement

The EDSt ar t El ement Rul es statement defines a special set of format rules to be applied to the first
paragraph in a parent element. The EDSt ar t El enent Rul es statement must appear in an El ement Def
statement. It is valid only for container elements.

An EDSt ar t El ement Rul es statement can contain zero or more substatements describing level and
context format rules.

Syntax
<EDSt ar t El enent Rul es Begin start element rules (any combination of level and context
format rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on
page 176)
<Cont ext For mat Rul e..> A context format rule (see “ContextFormatRule statement” on
page 175)
<Cont ext For nat Rul e..> Additional context format rule statements as needed

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Level For mat Rul e..> Additional level format rule statements as needed

> End of EDSt art El enent Rul es statement

EDEndElementRules statement

The EDEndEl ement Rul es statement defines a special set of format rules to be applied to the last
paragraph in a parent element. The EDEndEl enent Rul es statement must appear in an El ement Def
statement. It is valid only for container elements.

An EDENndEl enent Rul es statement can contain zero or more substatements describing level and context
format rules.

Syntax
<EDEndEl enent Rul es Begin end element rules (any combination of level and context
format rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on
page 176)
<Cont ext For nat Rul e..> A context format rule (see ““ContextFormatRule statement” on
page 175)
<Cont ext For nat Rul e..> Additional context format rule statements as needed
<Level For mat Rul e..> Additional level format rule statements as needed
> End of EDEndEl enent Rul es statement

ContextFormatRule statement

The Cont ext For mat Rul e statement contains clauses that specify an element’s formatting on the basis
of the element’s parent and sibling elements. It containsan | f statement and zero or more El sel f state-
ments. It can also containan El se statement.

The Cont ext For mat Rul e statement must appear in a format rules statement, such as an EDText For -
mat Rul es or EDEndEl enent Rul es statement.

Syntax
<Cont ext For nat Rul e Begin context format rule
<If.> An If clause (see “If, Elself, and Else statements™ on
page 177)
<El sel f ..> An Elself clause (see “If, Elself, and Else statements™ on
page 177)

175

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<El sel f ..> Additional statements as needed
<El se..> An optional Else clause (see “If, Elself, and Else statements™
on page 177)
> End of Cont ext For mat Rul e statement

LevelFormatRule statement

The Level For mat Rul e statement contains statements that specify an element’s formatting on the basis

of the level to which the element is nested within specific types of ancestor elements.

The Level For mat Rul e statement containsa Count El enent s statement listing the tags of elements
to count among the element’s ancestors and a statement specifying the tag of the element at which to stop
counting. The Level For mat Rul e statementalso containsan | f statement, zero or more El sel f state-
ments, and an optional El se statement. The |1 f, El sel f,and El se statements define the formatting

applied to the element at specified levels of nesting within the ancestor elements specified by the

Count El enent s statement.

The Level For mat Rul e statement must appear in a format rules statement, such as an EDText For -
mat Rul es or EDEndEl enent Rul es statement.

Syntax

<Level For mat Rul e

Begin level format rule

<Count El enent s

Optional list of elements to count among the element’s
ancestors

<Count El enent tagstring>

Tag of element to count

<Count El enent tagstring>

Additional statements as needed

>

End of Count El enent s statement

<St opCounti ngAt tagstring>

Optional tag of element at which to stop counting

<If.> An If clause (see “If, Elself, and Else statements™ on
page 177)

<El sel f ..> An optional Elself clause (see “If, Elself, and Else statements”
on page 177)

<El self .> Additional statements as needed

<El se..> An optional Else clause (see “If, Elself, and Else statements™
on page 177)

> End of Level For mat Rul e

176

ADOBE FRAMEMAKER 6.0 (177
MIF Statements for Structured Documents and Books

If, Elself, and Else statements

If, El self,and El se statements specify clauses within Cont ext For mat Rul e and Level For -
mat Rul e statements. In a Cont ext For mat Rul e statement, they specify a context and one or more state-
ments that define how to change formatting when the context applies.

Ifanif or El self statementdoesnotincludea Context or Level statement, or the Cont ext or
Level statement contains an empty string, this indicates that the I f or El sel f statement appliesin
all contexts.

In a Cont ext For mat Rul e statement, | f and El sel f, and El se statements take the following form:

<If Begin If clause

<Cont ext contextstring> String specifying a context, such as Secti on < Secti on. If
this context applies to the element, the following formatting
statements are used to format the element.

<Formatting statement> A statement (such asa For mat Tag or Fnt Changeli st Tag
statement) that specifies how to change the formatting when
the Cont ext statement applies (see “Formatting statements,”
next, for a list of formatting statements)

> End of | f statement

<El sel f

<Cont ext contextstring>

<Formatting statement>

> End of El sel f statement

<El se An optional Else clause

<Formatting statement>

> End of El se statement

Inalevel For mat Rul e statement, I f and El sel f, and El se statements take the following form:

<If Begin If clause

<Level |levelstring> String specifying a level of nesting, suchas 1 or 5. If the element
is nested to this level, the following formatting statements are
used to format the element.

<Formatting statenent> A statement (such asa For mat Tag or Fnt ChangelLi st Tag
statement) that specifies how to change the formatting when the
Level statementapplies (see “Formatting statements,” next, for
a list of formatting statements)

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

>

End of | f statement

<El sel f

Begin Elself clause

<Level |levelstring>

<Formatting statenent>

Additional formatting statements as needed

>

End of El sel f statement

<El se

An optional Else clause

<Formatting statenent>

Additional formatting statements as needed

End of El se statement

Formatting statements

If, El self,and El se statements can use the following statements to specify an element’s formatting:

<| sText Range bool ean>

Yes if the element is formatted as a text range instead of as a
paragraph

Only text format rules can include this statement.

<For mat Tag tagstring>

The format tag. If | sText Range specifies Yes, tagstring
specifies a character format tag; otherwise, it specifies a paragraph
tag, table tag, marker type, cross-reference format, or equation
size

Only text and object format rules can include this statement

<Fnt Changeli st Tag tagstring>

The tag of a named format change list (a format change list in the
format change list catalog). For more information on format
change lists, see “Format change lists” on page 179

Object format rules can’t include this statement

<Fnt ChangelLi st ..>

The definition of an unnamed format change list. For more infor-
mation on format change lists, see “Format change lists” on
page 179

Object format rules can’t include this statement

<Cont ext Format Rul e ..»

The definition of a nested context format rule

<Level Format Rul e ..»

The definition of a nested level format rule

178

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Cont ext Label | abel string> The context label for generated files. It cannot contain white-space
characters or any of these special characters:

()&l ., *+2<>%[]=1;:(}"

When a user displays the Set Up dialog box to set up a generated
file, the label appears next to elements to which the | f, El sel f,
or El se statement applies

Only text and object format rules can include this statement

<El ement Prefi x string> A string that appears before the element

Only prefix rules can include this statement

<El ement Suf fi x string> A string that appears after the element

Only suffix rules can include this statement

Each 1f, El self,and El se statement can include only one of the following formatting statements:
- For mat Tag

» Fnt Changeli st

» Fnt Changeli st Tag

Cont ext For mat Rul e

e Level For mat Rul e

Format change lists

A format change list specifies how a paragraph format changes when a format rule clause applies. A change
list can specify a change to just a single paragraph property, or it can specify changes to a long list of
properties.

A format change list can be named or unnamed. A named change list appears in the Format Change List
Catalog. Format rule clauses that use a named change list specify its name (or tag). Multiple rule clauses
can specify the same named change list. An unnamed change list appears in a rule clause. It is used only by
the rule clause in which it appears.

FmtChangelListCatalog statement

The Fnt Changeli st Cat al og statement defines the contents of the Format Change List Catalog. A
document can have only one Fnt ChangelLi st Cat al og statement which must appear at the top level in
the order given in “MIF file layout” on page 17.

Syntax

<Fnt ChangelLi st Cat al og Begin Format Change List Catalog

<Fnt ChangelLi st ..> Defines an element (see “FmtChangelList statement,” next)

179

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Fnt ChangelLi st ..> Additional statements as needed

> End of Fmt Changeli st Cat al og statement

FmtChangelList statement

The Fnt ChangelLi st statement creates a format change list definition. The Fnt ChangeLi st statement
for a named change list must appear in the Fnt ChangeLi st Cat al og statement. The Fnt Changeli st
statement for a unnamed change list must appear in the format rule clause that uses it.

A change list can specify absolute values or relative values. For example, it can specify that the paragraph
left indent is one inch or it can specify that it is one inch greater than the inherited left indent. Alternatively,
a change list can simply specify a paragraph catalog format to apply to a paragraph. If it does this, it can’t
specify changes to any other paragraph properties.

IfaFnt ChangelLi st statement defines a named change list, it must include an Fcl Tag statement speci-
fying its name. In addition, it must contain one statement for each paragraph format property it changes.
For example, if anamed change list changes only the first indent by a relative value, it contains only Fcl Tag
and Pgf FI ndent Change statements. If it changes the space below and the leading with absolute values,
it contains Fcl Tag, Pgf SpBefore, and Pgf Leadi ng statements.

IfaFnt Changeli st statement changes a paragraph property to an absolute value, the statement it uses is
the same as the corresponding paragraph format statement (for example, Pgf LI ndent). If the change list
changes a property with a relative value, the statement it uses has the name of the corresponding paragraph
format statement with the word Change appended to it (for example, Pgf LI ndent Change).

Syntax

Basic properties

<Fnt Changeli st Begin format change list
<Fcl Tag tagstring> Format change list name if the format change list is
named
<Fcl Pgf Cat al ogRef tagstring> A paragraph catalog format to apply. If the

Fnt ChangelLi st statementincludes this statement,
it can’t include any of the following statements

<Pgf FI ndent di nensi on> First line left margin, measured from left side of cur-
rent text column

<Pgf FI ndent Change di nensi on> Change to the first line left margin

<Pgf FI ndent Rel ati ve bool ean> Yes means the firstindent is relative to the left indent
instead of the left side of the current text column

<Pgf LI ndent di nensi on> Left margin, measured from left side of current text
column

<Pgf LI ndent Change di nensi on> Change to the left margin

180

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Pgf R ndent di nensi on>

Right margin, measured from right side of current text
column

<Pgf Rl ndent Change di mensi on>

Change to the right margin

<Pgf Al i gnment keywor d>

Alignment within the text column

keywor d can be one of:
Left Ri ght

Left

Cent er

Ri ght

<Pgf SpBef or e di nensi on>

Space above paragraph

<Pgf SpBef or eChange di nensi on>

Change to space above paragraph

<Pgf SpAfter di nension>

Space below paragraph

<Pgf SpAf t er Change di mensi on>

Change to space below paragraph

<Pgf Li neSpaci ngFi xed bool ean>

Yes means the lines spacing is fixed (to the default
font size)

<Pgf Leadi ng di nensi on>

Space below each line in a paragraph

<Pgf Leadi ngChange di mensi on>

Change to space below each line in a paragraph

<Pgf NunTabs i nteger>

Number of tabs in a paragraph. To clear all the tabs in
a paragraph, specify 0

<TabSt op

Begin definition of tab stop; the following property
statements can appear in any order, but must appear
within a TabSt op statement

<TSX di nensi on>

Horizontal position of tab stop

<TSXRel ati ve bool ean>

Yes means the tab stop is relative to the left indent

<TSType keyword>

Tab stop alignment

keywor d can be one of:
Left

Cent er

Ri ght

Deci mal

<TSLeader Str string>

Tab stop leader string (for example, . ")

<TSDeci nal Char integer>

Align decimal tab around a character by ASCII value;
in UNIX versions, type man asci i ina UNIX window
for a list of characters and their corresponding ASCII
values

>

End of TabSt op statement

<TabSt op..>

Additional statements as needed

181

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<MoveTabs di nensi on>

Move all tabs by a specified distance. A format
change list can have one or more TabSt ob state-
ments, or a MoveTabs statement. It can’t have both

Default font name properties

<FFanmily string>

Name of font family

<FAngl e string>

Name of angle

<FWei ght string>

Name of weight

<FVar string>

Name of variation

<FPost Scri pt Nane string>

Name of font when sent to PostScript printer (see
“Font name” on page 81)

<FPI at f or mMNan®e string>

Platform-specific font name, only read by Macintosh
and Windows versions (see “FPlatformName state-
ment” on page 82)

Default font size color and width

<FSi ze di mensi on>

Size, in points only

<FSi zeChange di nensi on>

Change to default font size

<FCol or tagstring>

Font color (see “ColorCatalog statement™ on
page 94)

<FSepar at i on integer>

Font color; no longer used, but written out by
FrameMaker products for backward-compatibility
(see “Color statements™ on page 280)

<FStretch percent>

The amount to stretch or compress the font, where
100% means no change

<FStret chChange percent>

The amount to change the width setting for the font,
where 100% means no change

Default font style

<FUnder i ni ng keyword>

Turns on underlining and specifies underlining style

keywor d can be one of:
FNoUnder I i ni ng

FSi ngl e

FDoubl e

FNuneri c

<FOverl i ne bool ean>

Turns on overline style

<FStri ke bool ean>

Turns on strikethrough style

<FChangeBar bool ean>

Turns on the change bar

182

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<FPosi tion keyword>

Specifies subscript and superscript characters; font
size and position relative to baseline determined by
Document substatements (see page 105)

keywor d can be one of:
FNor mal

FSuper scri pt
FSubscri pt

<FQut | i ne bool ean>

Turns on outline style (Macintosh version only)

<FShadow bool ean>

Turns on shadow style (Macintosh version only

<FPai r Ker n bool ean>

Turns on pair kerning

<FCase keyword>

Applies capitalization style to string

keywor d can be one of:
FAsTyped

FSmal | Caps

FLower case

FUpper case

Default font kerning information

<FDX percent >

Horizontal kern value for manual kerning expressed as
percentage of an em; positive value moves characters
right and negative value moves characters left

<FDY percent >

Vertical kern value for manual kerning expressed as
percentage of an em; positive value moves characters
down and negative value moves characters up

<FDW per cent >

Spread value for space between characters expressed
as percentage of an em; positive value increases the
space and negative value decreases the space

<FDWChange di nensi on>

Change to spread value for space between characters
expressed as percentage of an em; positive value
increases the space and negative value decreases the
space

Default font miscellaneous information

<FLocked bool ean>

Yes means the font is part of a text inset that obtains
its formatting properties from the source document

Pagination properties

<Pgf Pl acenent keyword>

Vertical placement of paragraph in text column

keywor d can be one of:
Anywher e

Col umTop

PageTop

LPageTop

RPageTop

183

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Pgf Pl acenent Styl e keywor d>

Placement of side heads, run-in heads, and para-
graphs that straddle text columns

keywor d can be one of:

Nor mal

Runl n

Si deheadTop

Si deheadFi r st Basel i ne
Si deheadLast Basel i ne
Straddl e

St raddl eNor mal Onl 'y

<Pgf Runl nDef aul t Punct string>

Default punctuation for run-in heads

<Pgf Wt hPrev bool ean>

Yes keeps paragraph with previous paragraph

<Pgf W t hNext bool ean>

Yes keeps paragraph with next paragraph

<Pgf Bl ockSi ze i nt eger >

Widow/orphan lines

Numbering properties

<Pgf Aut oNum bool ean>

Yes turns on autonumbering

<Pgf NumFor mat string>

Autonumber formatting string

<Pgf Nunmber Font tagstring>

Tag from Character Catalog

<Pgf NumAt End bool ean>

Yes places number at end of line, instead of begin-
ning

Advanced properties

<Pgf Hyphenat e bool ean>

Yes turns on automatic hyphenation

<HyphenMaxLi nes i nt eger>

Maximum number of consecutive lines that can end in
a hyphen

<HyphenM nPrefi x integer>

Minimum number of letters that must precede
hyphen

<HyphenM nSuf fi x i nteger>

Minimum number of letters that must follow a
hyphen

<HyphenM nWord i nt eger>

Minimum length of a hyphenated word

<Pgf Let t er Space bool ean>

Spread characters to fill line

<Pgf M nWor dSpace i nt eger >

Minimum word spacing (as a percentage of a stan-
dard space in the paragraph’s default font)

<Pgf Opt Wr dSpace i nt eger >

Optimum word spacing (as a percentage of a stan-
dard space in the paragraph’s default font)

<Pgf MaxWor dSpace i nt eger >

Maximum word spacing (as a percentage of a stan-
dard space in the paragraph’s default font)

184

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Pgf Language keyword>

Language to use for spelling and hyphenation

keywor d can be one of:
NoLanguage
USEngl i sh
UKENngl i sh

Ger man

Swi ssGer man
French

Canadi anFr ench
Spani sh

Cat al an
Italian

Por t uguese
Brazilian

Dani sh

Dut ch

Nor wegi an
Nynor sk

Fi nni sh

Swedi sh

<Pgf TopSepar at or string>

Name of reference frame (from reference page) to put
above paragraph

<Pgf TopSepAt | ndent bool ean>

Yes if the position of the frame specified by the
Pgf TopSepar at or statement is at the current left
indent

<Pgf TopSepCf f set di mensi on>

Position at which to place the reference frame above
the paragraph

<Pgf Bot Separator string>

Name of reference frame (from reference page) to put
below paragraph

<Pgf Bot SepAt | ndent bool ean>

Yes if the position of the frame specified by the
Pgf Bot Separ at or statement is at the current left
indent

<Pgf Bot SepOf f set di nensi on>

Position at which to place the reference frame below
the paragraph

Table cell properties

<Pgf Cel | Al'i gnment keywor d>

Vertical alignment for first paragraph in a cell

keywor d can be one of:
Top

M ddl e

Bott om

<Pgf Cel | LMar gi n di nensi on>

Left cell margin for first paragraph in a cell

<Pgf Cel | LMar gi nChange di nensi on>

Change to left cell margin for first paragraph in a cell

<Pgf Cel | Bvar gi n di nensi on>

Bottom cell margin for first paragraph in a cell

185

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Pgf Cel | BMar gi nChange di nensi on>

Change to bottom cell margin for first paragraph in a
cell

<Pgf Cel | TMar gi n di mensi on>

Top cell margin for first paragraph in a cell

<Pgf Cel | TMar gi nChange di nensi on>

Change to top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di mensi on>

Right cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi nChange di nensi on>

Change to right cell margin for first paragraph in a cell

<Pgf Cel | LMar gi nFi xed bool ean>

Yes means the left cell margin is fixed

<Pgf Cel | TMar gi nFi xed bool ean>

Yes means the top cell margin is fixed

<Pgf Cel | RVar gi nFi xed bool ean>

Yes means the right cell margin is fixed

<Pgf Cel | BMar gi nFi xed bool ean>

Yes means the bottom cell margin is fixed

>

End of Fnt Changeli st statement.

Elements

ElementBegin and ElementEnd statements

The El enent Begi n and El enent End statements indicate where a structural element begins and ends.
These statements must appear in a Par aLi ne statement (see page 192) or in a BookEl ement s statement

(see page 195).

Syntax

<El ement Begi n

Begin element

<Uni que | D>

ID, persistent across sessions, assigned when a FrameMaker
product generates a MIF file; used by the APl and should not
be used by filters

<El enent Ref er enced bool ean>

Yes means the element is marked as a PDF named destination
for cross-references, hypertext markers, or bookmarks (version
6.0 or later)

<ETag tagstring>

Tag name of element from Element Catalog

<Col | apsed bool ean>

Collapse element in structure view

<Speci al Case bool ean>

Treat element as a special case for validation

<AttributeDi splay keyword>

Default attribute display setting for element

keywor d can be one of:

Al'| Attri but es: display all attributes

RegAndSpec: display required and specified attributes
None: don’t display attributes

<Attributes

Element’s attributes

186

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Attribute Attribute’s name and values
<AttrNane string> Attribute name
<AttrVal ue string> Attribute value
<AttrVal ue string> Attribute value if attribute allows more than one value
> End of Attri bute statement
<Attribute.> Additional statements as needed
> End of Attri butes statement
<User String string> A string in which clients can store private data
> End of El enent Begi n statement
<El ement End tagstring> End of specified element
Usage

FrameMaker+SGML writes out the t agst ri ng value in an El ement End statement for use by filters. Your
application does not need to supply the t agst ri ng value when it writes MIF files.

If the interpreter reads unbalanced El enent Begi n and El enent End statements, it ignores superfluous
element ends and closes all open elements at the end of a Text FI owstatement. If the interpreter reads a
flow that does not have an element enclosing all of the flow’s contents, it creates a highest-level element
with the tag NoNane. El ement Begi n and El enent End statements are nested within Par aLi ne and
BookEl enent s statements. The following example shows how FrameMaker+SGML writes an
UnorderedList element:

<Par a
<PgfTag "Bullet'>
The autonumber contains a bullet and a tab.
<PgfNuntString “\xab \t'>
<Par aLi ne
Note that the El enentBegin statement is nested inside both
the Para and Paraline statenents.
<El enent Begi n
<ETag " UnorderedList'>
<Col | apsed No >
<Speci al Case No >
> # end of El enentBegin
<El enent Begi n
<ETag “Item >
<Col | apsed No >

187

ADOBE FRAMEMAKER 6.0 (188
MIF Statements for Structured Documents and Books

<Speci al Case No >
> # end of El enentBegin
<String "Light rail provides transportation for those who '>
>
<Par aLi ne
<String “are unable to drive or cannot afford an autonpbile.'>
<El erent End “Item >
>
> # end of Para
<Par a
<PgfTag "Bul let'>
<PgfNuntString “\xa5 \t'>
<Par aLi ne
<El enent Begi n
<ETag “Item >
<Col | apsed No >
<Speci al Case No >
> # end of El enentBegin
<String "Light rail lures comuters away fromrush hour traffic.'>
Again, note that both the Itemand Bulletlist elenents end
before the end of the Para and Parali ne statements.
<El ementEnd " Item >
<El erent End " Unor der edLi st' >
>

> # end of Para

PrefixEnd and SuffixBegin statements

The Pr ef i xEnd statement appears after the El enent Begi n statement and any prefix strings the element
has. Everything between the El enent Begi n statement and the Pr ef i xEnd statement is treated as the
element prefix. The Pr ef i xEnd statement does not appear when the element has no prefix.

The Suf fi xBegi n statement appears before the element suffix string, which is followed by the

El ement End statement. Everything between the Suf f i xBegi n statement and the El ement End
statement is treated as the element suffix. The El ement End statement does not appear when the element
has no suffix.

ADOBE FRAMEMAKER 6.0 |189
MIF Statements for Structured Documents and Books

Preference settings for structured documents

Document statement

In addition to document preferences for standard FrameMaker documents (see “Document statement” on
page 99), the MIF Docunent statement describes preferences for structured FrameMaker+SGML
documents.

Syntax
<Docunent See page 99

<DEl enment Cat al ogScope keywor d> Validation scope
keywor d can be one of:
Strict
Loose
Chi l dren
Al 'l
Cust onlLi st

<DCust onEl erment Li st List of tags to display when DEl erment Cat al ogScope
specifies Cust onli st

<EDTag string> Element definition name
<EDTag string> Additional statements as needed

> End of DCust onEl enment Li st statement

<DAttri but eDi spl ay keyword> Default attribute display setting for document
keywor d can be one of:
All Attri but es: display all attributes
RegAndSpec: display required and specified attributes
None: don’t display attributes

<DAttr Edi t or keyword> When Edit Attributes dialog box appears for new ele-
ments
keywor d can be one of:
Never : never
Al ways: always
WhenRequi r ed: when there are required attributes

<DEl enent Bor der sOn bool ean> Yes turns on element borders in document window. This
statement and DEl enent Tags are mutually exclusive.
If both statements appear in a MIF file, the later state-
ment overrides the earlier one

<DEl ement Tags bool ean> Yes turns on element tags in document window. This
statement and DEl ement Bor der sOn are mutually
exclusive. If both statements appear in a MIF file, the later
statement overrides the earlier one

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<DUsel ni t St ruct ure bool ean>

Yes means FrameMaker+SGML inserts initial structure
for new elements

<DSGVLAppNane string>

The name of the SGML application associated with the
document. For information on registering SGML applica-
tions, see the online manual FrameMaker+SGML Devel-
oper’s Guide

<DExcl usi ons..>

Lists exclusions inherited when document is included in a
structured book (see “ElementDef statement” on
page 168)

<Dl ncl usi ons..>

Lists inclusions inherited when document is included in a
structured book (see “ElementDef statement™ on
page 168)

<DSepar at el ncl usi ons bool ean>

Yes means FrameMaker+SGML lists inclusions sepa-
rately in the element catalog

<DApp! yFor mat Rul es bool ean>

Yes uses element format rules to reformat document on
opening and to remove format overrides; for input filters
only, not generated by a FrameMaker product

<DBookEl enent Hi er ar chy

If the document is in a book, list of ancestors of the doc-
ument’s root element

<El ement Cont ext

Describes ancestor element of the document’s root ele-
ment

<Pr evEl enent

<ETag tagstring>

Tag of sibling element preceding ancestor element

<Attributes .>

>

<El erment
<ETag tagstring> Tag of ancestor element
<Attributes .>

>

<Next El enent

<ETag tagstring>

Tag of sibling element following ancestor element

<Attributes .>

End of El enent Cont ext statement

>

End of DBookEl emrent Hi er ar chy statement

<DFCLMaxi mums

Upper change list limits. Format change lists cannot incre-
ment properties beyond these values

190

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Pgf FI ndent di mensi on>

Maximum first indent allowed in document

<Pgf LI ndent dimensi on>

Maximum left indent allowed in document

<Pgf R ndent di mensi on>

Maximum right indent allowed in document

<Pgf SpBef or e di mensi on>

Maximum space before allowed in document

<Pgf SpAf t er di mension>

Maximum space after allowed in document

<Pgf Leadi ng di mensi on>

Maximum leading allowed in document

<FSi ze di nmensi on>

Maximum font size allowed in document

<FDW di nensi on>

Maximum character spread allowed in document

<TSX di nensi on>

Maximum horizontal position of tab stop

<Pgf Cel | LMar gi n di mensi on>

Maximum left cell margin for first paragraph in a cell

<Pgf Cel | BMar gi n di mensi on>

Maximum bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di mensi on>

Maximum top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di mensi on>

Maximum right cell margin for first paragraph in a cell

End of DFCLMaxi muns statement

<DFCLM ni rmums

Lower change list limits. Format change lists cannot dec-
rement properties below these values

<Pgf FI ndent di mensi on>

Minimum first indent allowed in document

<Pgf LI ndent dimension>

Minimum left indent allowed in document

<Pgf Rl ndent di mensi on>

Minimum right indent allowed in document

<Pgf SpBef or e di mensi on>

Minimum space before allowed in document

<Pgf SpAf t er di mension>

Minimum space after allowed in document

<Pgf Leadi ng di mensi on>

Minimum leading allowed in document

<FSi ze di mensi on>

Minimum font size allowed in document.

<FDW di nensi on>

Minimum character spread allowed in document.

<TSX di nensi on>

Minimum horizontal position of tab stop

<Pgf Cel | LMar gi n di mensi on>

Minimum left cell margin for first paragraph in a cell

<Pgf Cel | BMar gi n di mensi on>

Minimum bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di mensi on>

Minimum top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di mensi on>

Minimum right cell margin for first paragraph in a cell

End of DFCLM ni muns statement

191

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

> End of Docunent statement

Text in structured documents

TextLine statement
Text lines cannot contain elements.

ParalLine statement

The Par aLi ne statement defines a line within a paragraph. It must appear in a Par a statement.

Syntax

<Par alLi ne
<El ement Begi n..> Begin structural element (see page 186)
<El ement End tagstring> End structural element

> End of Parali ne statement

Usage

A typical Par aLi ne statement consists of one or more St r i ng, Char, ATbl , AFr ane, FNot e, Var i abl e,
XRef , and Mar ker statements that define the contents of the line of text. These statements are interspersed
with statements that indicate the scope of document components such as structural elements and condi-
tional text.

Structured book statements

A structured book file contains documents that were created in FrameMaker+SGML. These documents
normally contain structural elements. A structured book file has the same book statements that appear in
a normal book file plus two additional types of information about structural elements:

= An Element Catalog defined in EI enent Def Cat al og

« A structure tree defined in BookEl enent s

ElementDefCatalog statement

The El enent Def Cat al og statement contains the definitions of all elements in the book file. A book file
can have only one El ement Def Cat al og statement. It normally appears near the beginning of the file.

Syntax

<El ement Def Cat al og Begin Element Catalog

192

ADOBE FRAMEMAKER 6.0 [193
MIF Statements for Structured Documents and Books

<El ement Def ..> Element definitions (defined on page 168)
<El erment Def ..> Additional statements as needed
> End of El enent Def Cat al og statement
Usage

The book file inherits the Element Catalog from the document used to generate the book file or from a
document given as the source for the Import>Element Definitions command. In a MIF file, you should
copy the Element Catalog from one of the structure documents included in the book.

BookSettings statement

The BookSet t i ngs statement contains the definitions of all elements in the book file. A book file can have
only one BookSet t i ngs statement. It normally appears near the beginning of the file. The statements in
the Book Set t i ngs statement correspond to statements in the Book Set t i ngs statement, except that they
begin with the letter B instead of the letter D.

Syntax

<BookSet ti ngs Begin book settings

<BEl enment Cat al ogScope keywor d> Validation scope

keywor d can be one of:
Strict

Loose

Chi I dren

All

Cust onlLi st

<BCust onEl enment Li st List of tags to display when BEIl enent Cat al ogScope
specifies Cust onli st

<EDTag string> Element definition name

<EDTag string> Additional statements as needed

> End of DCust onEl enent Li st statement

<BAttri but eDi spl ay keyword> Default attribute display setting for document

keywor d can be one of:

Al | Attri but es: display all attributes

RegAndSpec: display required and specified attributes
None: don’t display attributes

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<BAttrEditor keyword>

When Edit Attributes dialog box appears for new elements

keywor d can be one of:

Never : never

Al ways: always

WhenRequi r ed: when it is required

<BUsel ni t St ruct ur e bool ean>

Yes means FrameMaker+SGML inserts initial structure for
new elements

<BSGWLAppNane string>

The name of the SGML application associated with the docu-
ment. For information on registering SGML applications, see
the online manual FrameMaker+SGML Developer’s Guide

<BSepar at el ncl usi ons bool ean>

Yes means FrameMaker+SGML lists inclusions separately in
the element catalog

<BFCLMaxi mums

Upper change list limits. Format change lists cannot incre-
ment properties beyond these values

<Pgf FI ndent di mensi on>

Maximum first indent allowed in book

<Pgf LI ndent di mensi on>

Maximum left indent allowed in book

<Pgf Rl ndent di mensi on>

Maximum right indent allowed in book

<Pgf SpBef or e di mensi on>

Maximum space before allowed in book

<Pgf SpAf t er di mension>

Maximum space after allowed in book

<Pgf Leadi ng di mensi on>

Maximum leading allowed in book

<FSi ze di nensi on>

Maximum font size allowed in book

<FDW di mensi on>

Maximum character spread allowed in book

<TSX di nensi on>

Minimum horizontal position of tab stop

<Pgf Cel | LMar gi n di mensi on>

Minimum left cell margin for first paragraph in a cell

<Pgf Cel | BMar gi n di mensi on>

Minimum bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di mensi on>

Minimum top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di nensi on>

Minimum right cell margin for first paragraph in a cell

End of BFCLMaxi muns statement

<BFCLM ni rmumns

Lower change list limits. Format change lists cannot decre-
ment properties below these values

<Pgf FI ndent di mensi on>

Minimum first indent allowed in book

<Pgf LI ndent di mensi on>

Minimum left indent allowed in book

<Pgf Rl ndent di mensi on>

Minimum right indent allowed in book

<Pgf SpBef or e di mensi on>

Minimum space before allowed in book

194

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

<Pgf SpAft er dimension>

Minimum space after allowed in book

<Pgf Leadi ng di mensi on>

Minimum leading allowed in book

<FSi ze di nensi on>

Minimum font size allowed in book

<FDW di nensi on>

Minimum character spread allowed in book

<TSX di nensi on>

Minimum horizontal position of tab stop

<Pgf Cel | LMar gi n di nensi on>

Minimum left cell margin for first paragraph in a cell

<Pgf Cel | Bvar gi n di nensi on>

Minimum bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di mensi on>

Minimum top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di nensi on>

Minimum right cell margin for first paragraph in a cell

End of BFCLM ni muns statement

End of BookSettings statement

BookElements statement

The BookEl enent s statement contains all of the elements in the book’s hierarchy. This statement must
appear after the BookConponent statements. Otherwise, the MIF interpreter warns you about out-of-

bounds EConponent values.

Syntax

<BookEl enent s

Begin structure tree

<El ement Begi n..>

Begin element that contains other elements

<El enent End>

End element that contains other elements

<El ement Begi n..>

Additional statements as needed

<El ement End>

<El ement

Begin element with no subelements

<ETag tagstring>

Element tag name from Element Catalog

<EConponent integer>

Corresponding book component (numbering starts at 1)

<EText Sni ppet string>

Text snippet for structure window

>

End of El enent statement

<El enent ..>

Additional statements as needed

End of BookEl enent s statement

Usage

The El enent Begi n and El enment End statements define elements that contain other elements.

195

ADOBE FRAMEMAKER 6.0
MIF Statements for Structured Documents and Books

The El enent statement defines an element with no subelements. If the element is inserted in the book
structure from the Element Catalog, this statement includes only the ETag substatement. If the element
corresponds to a book component, this statement encodes the sequence number of the corresponding
component file. If the element corresponds to an unstructured component file, the ETag string value is
empty. (For more information about structured documents, see Using FrameMaker+SGML.)

MIF Messages

Invalid context specification: parameter.

There is a syntax error in an <EDCont ext Spec> statement in an element definition.

EDContainerType has an invalid value.

An <EDCont ai ner Type> statement uses an invalid value.

EDContainerType ignored for object element definition.

An element definition contains an <EDCont ai ner Type> statement but the <Obj ect Type> statement
doesn’t specify EDCont ai ner.

Value of EDObject is invalid.

An <EDObj ect > statement uses an invalid value.

General rule not allowed for object element definition.

An element definition for an object element contains an <EDGener al Rul e> statement.

Exclusions not allowed for object element definition.

An element definition for an object element contains an <EDExc| usi ons> statement.

Inclusions not allowed for object element definition.

An element definition for an object element contains an <EDI ncl usi ons> statement.

Discarding element definition--no EDTag name was specified.

An element definition has no tag name, so it is ignored.

Bad general rule for element definition: Name or '(* expected.

A general rule is invalid.

Bad general rule for: Cannot use different connectors in a group.

A general rule is invalid.

Bad general rule for: '(* expected.

A general rule is invalid.

196

ADOBE FRAMEMAKER 6.0

MIF Statements for Structured Documents and Books

Bad general rule for element definition: *)' expected.

A general rule is invalid.

Ambiguous general rule for element definition:

A general rule is invalid.

Bad general rule for element definition: Syntax Error.

A general rule is invalid.

Bad general rule for element definition: Connector (, or | or &) expected.

A general rule is invalid.

Duplicate definition: only first element definition for tag will be used.

Two or more element definitions use the same tag.

Format tag is invalid for an element of type EDEquation - defaulting to Medium.

Only small, medium, and large format tags are valid for an equation element.

Element name contains characters that are not allowed.

Element name contains at least one disallowed character, suchas &, | ,or*.

Invalid table tagging specification: parameter.

An element definition contains a <EDTabl eTaggi ng> statement with a syntax error.

197

MIF Equation Statements

This chapter describes the MIF statements that define equations. Use it as a reference when you write filters

for translating documents that include equations. For more information about creating and editing
equations, see your FrameMaker product user’s manual.

Document statement

In addition to document preferences (see “Document statement” on page 99), the MIF Docunent
statement describes standard formats for equations. The equation formatting substatements correspond

to settings in the Equations palette.

Syntax

<Docunent

See page 99

Equation sizes

<DMat hSnal | I nt egral di mensi on>

Size in points of integral symbols in small equations

<Divat hMedi um nt egral di mensi on>

Size in points of integral symbols in medium equations

<Diwat hLar gel nt egral di nensi on>

Size in points of integral symbols in large equations

<Dwvat hSmal | Si gma di mensi on>

Size in points of summation and product symbols in small
equations

<Divat hMedi unsi gna di nensi on>

Size in points of summation and product symbols in
medium equations

<DMat hLar geSi gna di mensi on>

Size in points of summation and product symbols in large
equations

<Dwvat hSnal | Level 1 di nensi on>

Size in points of level 1 expression (normal level) in small
equations

<Dwvat hMedi unLevel 1 di mensi on>

Size in points of level 1 expression in medium equations

<DMat hLar geLevel 1 di nensi on>

Size in points of level 1 expression in large equations

<Dwvat hSnal | Level 2 di nensi on>

Size in points of level 2 expression (first level subscripts
and superscripts) in small equations

<Dwvat hMedi unLevel 2 di mensi on>

Size in points of level 2 expression in medium equations

<DMat hLar geLevel 2 di nensi on>

Size in points of level 2 expression in large equations

<Dwvat hSnal | Level 3 di nensi on>

Size in points of level 3 expression (second level subscripts
and superscripts) in small equations

<Dwvat hMedi unLevel 3 di mensi on>

Size in points of level 3 expression in medium equations

198

ADOBE FRAMEMAKER 6.0 [199
MIF Equation Statements

<DMat hLar geLevel 3 di nensi on> Size in points of level 3 expression in large equations

<DWMat hSnal | Hori z int eger > Horizontal spread for small equations expressed as a per-
centage of equation’s point size; negative values
decrease space and positive values increase space

<Divat hMedi umHor i z i nteger> Horizontal spread for medium equations
<DMat hLar geHori z i nt eger > Horizontal spread for large equations
<DMat hSnal | Vert integer> Vertical spread for small equations expressed as a per-

centage of equation’s point size; negative values
decrease space and positive values increase space

<Divat hMedi umVert integer> Vertical spread for medium equations
<Diwat hLar geVert integer> Vertical spread for large equations
<Divat hShowCust om bool ean> Specifies whether to show all math elements or only cus-

tom elements in Insert Math Element dialog box

<Dwat hFunctions tagstring> Font for functions

<Divat hNurber s tagstring> Font for numbers

<Dwat hVari abl es tagstring> Font for variables

<Dwat hStrings tagstring> Font for strings

<DMat hGreek tagstring> Font for Greek characters

<DMat hCat al og..> Describes custom math elements (see “DMathCatalog

statement,” next)

> End of Docunent statement

DMathCatalog statement

The Dvat hCat al og statement describes the custom math elements in a document. It must appear in a
Docunent statement.

Syntax
<Diat hCat al og Lists custom math elements
<DMat hGr eekOverri des tagstring> Identifies a redefined Greek symbol and forces lookup on
reference page; t agst ri ng argument must match the
name of reference frame
<Dwvat hGreekOverri des tagstring> Additional statements as needed
<Divat hOpOverri des Identifies built-in operator with redefined display proper-
ties
<Divat hOpName tagstring> Name of built-in operator from reference frame

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

<DWMat hOpTLi neOverri de bool ean>

No uses default glyph for operator; Yes looks up opera-
tor on text line in reference frame

<DMat hOpPosi t i onA i nteger>

Position of first operand expressed as a percentage of
equation font size

<Divat hOpPosi ti onB i nteger>

Position of second operand

<DMat hOpPosi ti onC i nteger>

Position of third operand

>

End of DMat hOpQOver ri des statement

<Diat hNew

Defines new math element

<DMat hOpNane tagstring>

Name of math element from reference frame

<DMat hNewType keywor d>

Specifies custom math element type; for a list of types,
see the chapter on creating equations in your user’s man-
ual

keywor d can be one of:
At om

Delimter

Functi on

I nfix

Lar ge

Limt

Postfi x

Prefix

Verti cal Li st

<Divat hOpTLi neOverri de bool ean>

No uses default glyph for operator; Yes looks up opera-
tor on text line in reference frame

<DWMat hOpPosi t i onA i nteger>

Position of first operand expressed as a percentage of
equation font size

<DMat hOpPosi ti onB i nteger>

Position of second operand

<DMat hOpPosi ti onC i nteger>

Position of third operand

End of DVat hNew statement

End of DMvat hCat al og statement

Usage

You can define new math elements or redefine math elements that appear on the Equations palette. To
create a custom math element, add the element’s name and type to the DVat hCat al og statement. On a
reference page with a name beginning with the word FrameMath, define the math element in a named
unanchored graphic frame. In the frame (called a reference frame), create a text line that contains one or
more characters that represent the math symbol; you can apply specialized math fonts and change the
position of the characters to get the appearance you want. You can use custom elements in equations by

including them in a Mat hFul | For mstatement.

200

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

For example, to create a symbol for the set of real numbers, add the new element to the Math Catalog as
follows:

<Docunent
<Divat hCat al og
<Divat hNew
Name of new math el ement
<Divat hOpNarme "~ Real Nunbers' >
Type of math el enent
<Divat hNewType Atom >
> # end of DMat hNew
> # end of DwMat hCat al og
> # end of Document
Define the custom element on a reference page that has a name beginning with FrameMath:

<Page
Create a naned reference page.
<PageType ReferencePage >
<PageTag " FranmeMat hl' >
Create a naned, unanchored frane.
<Fr ame
<FrameType Not Anchored >
<Tag "~ Real Nunbers'>

Create the math elenment in the first text line in the frane.

<Text Li ne

Apply a specialized math font to the letter R
<Font
<FTag "'>
<FFam |y "~ Mathenatical Pi'>
<FVar "Six'>
<FWei ght "~ Regul ar' >
># end of Font
<String "R >
> # end of TextLine
> # end of Frane
> # end of Page

To insert the new element in an equation, use the char expression (see page 208) and the element’s name
ina Mat hFul | For mstatement as shown in the following equation:

<mMat hFul | Form " equal [

in[forall[char[x]], comm[char[(*T"Real Numbers"T*)New],
times[char[f],id[char[x]]]]], 1ndexes[1,0,char[x], nuni3.00000000,"3"]]]"

r
]

201

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

> # end of MathFul | Form
The equation looks like this in the FrameMaker document:

welR, fix) = 5

You can change the appearance of a built-in math element, although you cannot change the element’s type
or behavior. For example, to redefine the built-in inverse sine function (asin) so that it appears as sin™’, add
the redefined element to the Math Catalog as follows:
<Divat hCat al og
<Divat hOpOverri des
The nane of the built-in operator as it appears in MF.
<Divat hOpNane "asin' >
Forces | ookup fromthe reference page.
<Divat hOpTLi neOverri de Yes >
> # end of DMat hOpOverrides
> # end of Dwat hCat al og
Redefine the appearance of the element in a reference frame as follows:

<Page

Create a naned reference page.
<PageType ReferencePage >
<PageTag " FranmeMat hl' >

Create a named, unanchored frane.
<Fr ame

<FrameType Not Anchored >

The nane of the built-in elenent as it appears in
the Equations palette.
<Tag "I nverse Sine' >
Define the elenent in the first text line in the franme.

<Text Li ne

Apply a new font style and position to change the
appearance of the math el enent.

<Font

<FTag "'>

<FWei ght "~ Regul ar' >

># end of Font

<String “sin' >

202

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

<Font
<FTag "'>
<FWei ght "~ Regul ar' >
<FPosi ti on FSuperscript >
># end of Font
<String -1 '>
> # end of TextLine
> # end of Frame
> # end of Page

When you create the reference frame that specifies the new appearance of the math element, you must give
the frame the name of the built-in element as it appears in the Equations palette. To find the name of a
built-in element, choose Insert Math Element from the equations pop-up menu on the Equations palette.
Turn off Show Custom Only in the dialog box and scroll through the element names until you find the one
you want.

To use the redefined element in an equation, include the asi n expression (see page 213) along with the
name of the reference frame as follows:

<Mat hFul | Form “asin[(*T"I nverse Sine"T*)char[x]]"'

> # end of MathFull Form

For more information about including custom operators in equations, see “Custom operators” on
page 223. For more information about format codes, see “MathFullForm statement syntax” on page 205.

Math statement

A Mat h statement describes an equation within a document. It can appear at the top level or within a Page
or Fr ane statement.

Syntax
<Mat h
Ceneric object statements Information common to all objects (see page 120)
<Angl e integer> Angle of rotation in degrees: 0, 90, 180, 270
<ShapeRect L T WH> Position and size of bounding rectangle, before rotation, in
enclosing page or frame
<Mat hFul | Form string> Description of equation (defined in “MathFullForm statement
syntax” on page 205)
<Mat hLi neBr eak di nensi on> Allows automatic line breaks after this position
<MathOrigin X Y> Position of equation in current frame or page

203

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

<Mat hAl i gnrment keywor d> Alignment of equation within ShapeRect

keywor d can be one of:
Left

Cent er

Ri ght

Manual

<Mat hSi ze keyword> Equation size (defined on page 198)

keywor d can be one of:
Mat hLar ge

Mat hivedi um

Mat hSmal |

> End of Mat h statement

Usage

Values of the ShapeRect statement specify the coordinates and size of the bounding rectangle before it
is rotated. The equation is rotated by the value specified in an Angl e statement. The Mat hFul | For mstring
defines the mathematical properties of the equation. For a complete description, see “MathFullForm
statement,” next.

Whenever you save a document as a MIF file using the Save As command, a FrameMaker product writes
all the Mat h substatements, except ObCol or, to the file. It writes an ObCol or statement only when the
equation is in a color other than black. The ObCol or statement specifies the color for the entire equation
object. To specify color for an individual element within an equation, use the formatting code
(*gstringg*) (see “MathFullForm statement syntax” on page 205).

If you are writing an output filter for converting FrameMaker equations to a format used by another appli-
cation, you might be able to ignore some of the Mat h substatements. You don’t need MIF statements for
FrameMaker’s math features that are unsupported by another application.

If you are writing an input filter for converting equations created with another application to FrameMaker
equations, you must provide a ShapeRect or Mat hOri gi n substatement to specify the equation’s
location on the page. The other Mat h substatements are not required. If you don’t provide them, the MIF
interpreter uses preset values. If you don’t define the equation in a Mat hFul | For mstatement, an equation
prompt appears in the FrameMaker document.

MathFullForm statement

The Mat hFul | For mstatement consists of a string containing a series of expressions that define the mathe-
matical structure of an equation. Each expression defines a component of the equation and can be nested
within other expressions.

204

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

A sample MathFullForm statement
This example shows an equation and the Mat hFul | For mstatement that defines it. The diagram shows the
hierarchy of the Mat hFul | For mstatement. Symbols that appear in the equation are shown in parentheses
following the Mat hFul | For mexpression.

y = a(x+b)’

<Mat hFul | Form
“equal [char[y],tines[char[a], power[id[plus[char[x],char[b]]],nun{2,"2"]]111]"

> # end of MathFull Form

equal (=)
| |
char (y) times
| |
char (a) power
| | |
id num (2)
(par ent heses)
plus (+)
| | |
char (x) char (b)

MathFullForm statement syntax

In addition to the mathematical structure of the equation, a Mat hFul | For mstatement can contain special
instructions for character formatting, manual alignment points, and positioning and spacing values.
Expressions have the following syntax:

Expr essi onNane[(* For mat Codes*) oper and, operand, . . .]

Where Is

Expressi onName The expression name (for example, abs)

For mat Codes Optional formatting codes (for example, i 2i), described next
oper and Another expression

Formatting codes are enclosed within asterisk (*) delimiters. If an expression doesn’t contain formatting
codes, it cannot contain asterisks. Formatting codes consist of a pair of flags enclosing a numeric value or
string, except for boolean flags, which are a single flag. For example, the following expression contains
formatting codes that select a display format and a boolean flag to set a manual line break point:

<mat hFul | Form “id[(*i 2i *)char[x]]"'>

205

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

String values in format codes must be enclosed in straight, double quotation marks ("). To include
characters in the extended ASCII range (above 0x127), use a backslash sequence (see “Character set in

strings” on page 13).

You can use the following formatting codes, which can appear in any order. The default for all numeric

values is 0.
Format code Meaning
Ai nt eger A Manual alignment mark in element (O=none, 1=right, 2=left)
bnetrich Extra space at bottom of expression; corresponds to Spacing values in the Position
Settings dialog box
BstringB Font angle (for example, "1t alic")
cintegerc Alignment for horizontal lists and matrices (O=baseline, 1=top, 2=bottom)
Cinteger C Character case
Di nt eger D Double underline (O=no underline, 1=underline)
f stringf Font family (for example, f" Ti nes" f)
iintegeri Display format number (0, 1, 2)
j integer]j Alignment for vertical lists and matrices (O=center, 1=left, 2=right, 3=at equal
symbol, 4=left of equal symbol)
I metricl Extra space to left of expression; corresponds to Spacing values in the Position
Settings dialog box
M In a matrix, makes all column widths equal (boolean)
m In a matrix, makes all row heights equal (boolean)
n No automatic parentheses (boolean)
Ni nt eger N Numeric underline (O=no underline, 1=underline)
oi nt eger o Outline (0=no outline, 1=outline)
Oi nt eger O Overline (0=no overline, 1=overline)
gstringq Color name (for example, " Red")
rmetricr Extra space to right of expression; corresponds to Spacing values in the Position
Settings dialog box
Ri nt eger R Shadow (0=no shadow, 1=shadow)
sdecimal s Character size in points (for example, s12. 00s)
Sinteger S Strikeout (0=no strikeout, 1=strikeout)
tmetrict Extra space at top of expression; corresponds to Spacing values in the Position

Settings dialog box

TstringT

Name of custom element from reference page frame

206

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Format code Meaning

u Manual line break to left (boolean)

Ui nt eger U Underline (0=no underline, 1=underline)
v Manual line break to right (boolean)
VstringV Font variation (for example, " Nar r ow")
VétringW Font weight (for example, " Bol d")
xnetricx Horizontal kern value

ymetricy Vertical kern value

When expressions have multiple display formats, there is one default format. Additional formats are
numbered. For example, the i d expression has three display formats.

Example MathFullForm statement

(x) <Mat hFul | Form “id[char[x]]"' >

[X] <Mat hFul | Form “id[(*ili*)char[x]]"' >
{x <Mat hFul | Form “id[(*i2i *)char[x]]"' >

Atomic expressions

Atomic expressions are expressions that don’t take other expressions as operands. They usually act as
operands in more complex expressions.

prompt

pr onpt is a placeholder to show an expression’s undefined operands. Of the character formatting specifi-
cations, only kerning values affect the appearance of a prompt.

Example MathFullForm statement
) <mMat hFul | Form "~ pronpt[]"' >
num

numdescribes a number. It always has two operands: the first shows the number as used for computations
(internal precision), and the second shows the number as displayed. When fewer digits are displayed than
are used internally, an ellipsis appears after the number.

Example MathFullForm statement

3.1415927 <Mat hFul | For m * nun{ 3. 141592653589793, " 3. 1415927"] " >

207

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

There are two special cases of the numexpression.

Example MathFullForm statement
Infinity <Mat hFul Il Form “nuniInfinity,"Infinity"]"' >
NaN <Mat hFul | For m * nun{ NaN, "NaN'] "' >

NaN means not a number. These forms of numusually result from computations.

string

st ri ng contains a character string. Character strings must be enclosed in straight, double quotation
marks ("). To include characters in the extended ASCII range (above 0x127), use a backslash sequence (see
“Character set in strings” on page 13). To include a straight, double quotation mark, precede the quotation
mark with a straight, double quotation mark.

Example MathFullForm statement

FraneMat h <Mat hFul | Form " string["FraneMath"]"' >

usi ng "quotes" <mMat hFul | Form “string["using ""quotes"""]"'>
char

char describes a character.

Example MathFullForm statement

X <mMat hFul | Form "~ char[x]"' >

The char expression can contain one of the letters a through z, one of the letters A through Z, a custom
math element, or one of the character names shown in the following table.

Example MathFullForm statement

0 <Mat hFul | Form " char[al eph] ' >

a <Mat hFul | Form " char[al pha] ' >

B <Mat hFul | Form " char[beta] ' >

O <Mat hFul | Form " char[bot]" >

X <Mat hFul | Form " char[chi]"' >

b] <Mat hFul | Form "~ char[cpartial]' >
° <Mat hFul | Form " char[degree]"' >

208

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Example MathFullForm statement

b <Mat hFul | Form "~ char[delta]"' >

A <Mat hFul | Form "~ char[Delta] ' >

0 <Mat hFul | Form "~ char[enptyset]"' >

€ <Mat hFul | Form " char[epsilon] ' >

n <Mat hFul | Form "~ char[eta] ' >

y <Mat hFul | For m * char [ganma] ' >

r <Mat hFul | For m * char [Ganma] ' >

0 <Mat hFul | Form “char[Im"' >

00 <Mat hFul | Form “char[infty]' >

l <Mat hFul | Form "~ char[iota]"' >

K <Mat hFul | Form " char [kappa] ' >

A <Mat hFul | Form " char [| anbda] ' >

A <Mat hFul | For m * char [Lanbda] ' >
<Mat hFul | Form " char [l dots]' >

u <Mat hFul | Form " char[rmu] ' >

0 <Mat hFul | Form " char[nabl a] ' >

v <Mat hFul | Form " char[nu]' >

W <Mat hFul | Form " char [orega] ' >

Q <Mat hFul | For m * char [Onega] ' >
<Mat hFul | Form ~ char [phi]"' >

) <Mat hFul | Form " char[Phi]" >

T <Mat hFul | Form “char[pi]' >

M <Mat hFul | Form “char[Pi]' >

<Mat hFul | Form °

char[pprinme]"' >

209

ADOBE FRAMEMAKER 6.0

MIF Equation Statements

Example MathFullForm statement

' <Mat hFul | Form " char[prinme]' >
<Mat hFul | Form "~ char[psi]"' >

W <Mat hFul | Form " char[Psi]"' >

0 <Mat hFul | Form "~ char[Re]"' >

p <Mat hFul | Form " char[rho] "' >

o <Mat hFul | Form " char [si gma] ' >

s <Mat hFul | Form " char[Si gma] ' >

T <Mat hFul I Form "~ char[tau] ' >

0 <Mat hFul | Form "~ char[theta]"' >

o <Mat hFul | Form " char[Theta] ' >

) <Mat hFul | Form " char[upsilon] "' >

Y <Mat hFul | Form " char[Upsil on] ' >

) <Mat hFul | For m " char [varphi]' >

w <Mat hFul | Form " char[varpi]' >

C <Mat hFul | Form " char[varsi gna] ' >

) <Mat hFul | Form *~char[vartheta] ' >

0 <Mat hFul | Form " char [wp] ' >

i3 <Mat hFul | Form “char[xi]' >

= <Mat hFul | Form “char[Xi]' >

14 <Mat hFul | Form "~ char[zeta] ' >

210

Using char for custom math elements
The char expression can contain a custom math element by using the following syntax:

<mat hFul | Form ~ char [(*T"El enent Name" T*) Newj ' >
where El enent Nane is the name of the reference frame that contains the custom element.

Using char and diacritical for diacritical marks

The char

and the diacritical

ADOBE FRAMEMAKER 6.0

MIF Equation Statements

expressions both describe diacritical marks around an operand.

The char expression places diacritical marks around a single operand, as shown in the following table. The
char expression is backward-compatible.

Example <MathFullForm> statement

X <mat hFul | Form "~ char[x, 1,0,0,0,0]"' >
X <mat hFul | Form "~ char[x, 2,0,0,0,0]"' >
% <mat hFul | Form "~ char[x, 3,0,0,0,0]"' >
X' <Mat hFul | Form “char[x,0,1,0,0,0]"' >
X" <Mat hFul | Form " char[x, 0,2,0,0,0]"' >
X" <Mat hFul | Form " char[x, 0,3,0,0,0]"' >
X <mat hFul | Form "~ char[x,0,0,1,0,0]"' >
X <Mat hFul | Form "~ char[x,0,0,2,0,0]"' >
5 <Mat hFul | Form " char[x, 0,0, 3,0,0]" >
% <Mat hFul | Form “char[x,0,0,0,1,0]"' >
X <Mat hFul | Form " char[x, 0,0,0,0, 1] "' >
X <mat hFul | Form "~ char[x,0,0,0,0,2]"' >

Thechar expression can also describe composite diacritical marks. The following table contains examples.

Example MathFullForm statement
X <mat hFul | Form "~ char[x,1,0,0,0,2]"' >
)j(' <mat hFul | Form "~ char[x, 3,1,0,0,2]"' >

Thedi acritical expression places diacritical marks around multiple operands and describes two
additional diacritical marks. The di acriti cal expression describes the same marks that the char
expression describes, but it can take multiple operands. In addition, the di acri ti cal expression

211

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

describes two forms of diacritical mark not described by the char expression. The following table shows
examples of di acritical expressions.

Example MathFullForm statement

)9(<mMat hFul | Form “diacritical[4,0,0,0,0,char[x]]"' >
< <mMat hFul | Form “diacritical[5,0,0,0,0,char[x]]"'>
— <Mat hFul | Form

AB “diacritical[4,0,0,0,0,times[char[A],char[B]]]"' >

Note: Thedi acri ti cal expression is not backward compatible. When an earlier version (previous to 4.x) of
a FrameMaker product reads a MIF file saved in version 4 or later of a FrameMaker product, any equations
thatcontaindi acri ti cal expressions are lost. You should edit any Mat hFul | For mstatements that contain
di acritical expressionsbefore opening the file in earlier versions of a FrameMaker product. For more infor-
mation, see “Math statements” on page 281.

dummy

The dummy expression describes a dummy variable that you can use as a placeholder in equations. For
example, in the following equation, i is a dummy variable:

4

i 2, .3, 4
2x=l+x+x +X +X
i=0

The dummy expression has the same syntax as the char expression and can contain the same character
symbols or names.

Example MathFullForm statement

X <Mat hFul | Form ~ dummy[x] "' >

Operator expressions

Operator expressions take at least one expression as an operand. There are no restrictions on the
complexity of operator expressions, and they are not restricted by any concepts of domain or typing.

212

Unary operators

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Unary operators have one expression as an operand. Three of the unary operators—i d, | par en, and
r par en—have multiple display formats. The following table contains an example of each unary operator
(in all of its display formats) with char [x] as a sample operand.

Example MathFullForm statement

IX] <Mat hFul | Form "~ abs[char[x]]" >
acosx <Mat hFul | Form " acos[char[x]]" >
acoshx <Mat hFul | Form " acosh[char[x]]" >
acotx <Mat hFul | Form " acot[char[x]]"' >
acothx <Mat hFul | Form " acoth[char[x]]" >
acscx <Mat hFul | Form " acsc[char[x]]" >
acschx <Mat hFul | Form " acsch[char[x]]" >
0x <mat hFul | Form " angl e[char[x]]" >
argx <Mat hFul | Form “arg[char[x]]"' >
asecx <Mat hFul | Form " asec[char[x]]" >
asechx <Mat hFul | Form " asech[char[x]]" >
asinx <Mat hFul | Form " asin[char[x]]" >
asinhx <Mat hFul | Form " asi nh[char[x]]" >
xO <Mat hFul | Form " ast[char[x]]' >
atanx <Mat hFul | Form " atan[char[x]]" >
atanhx <Mat hFul | Form " atanh[char[x]]" >
Ox <Mat hFul | Form * box[char[x]]" >
002x <Mat hFul | Form "~ box2[char[x]]" >
[ex <Mat hFul | Form * boxdot [char[x]]" >
(x| <mMat hFul | Form "~ bra[char[x]]"' >

[x]

<Mat hFul | Form °

ceil[char[x]]"'>

213

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Example MathFullForm statement

AX <Mat hFul | Form ~ change[char[x]]"' >
COSX <Mat hFul | Form " cos[char[x]]' >

coshx <Mat hFul | Form " cosh[char[x]]" >

cotx <Mat hFul | Form " cot[char[x]]' >

cothx <Mat hFul | Form " cot h[char[x]]" >

cscX <Mat hFul | Form " csc[char[x]]" >

cschx <Mat hFul | Form " csch[char[x]]" >

X x <mat hFul | Form " curl[char[x]]" >

xT <Mat hFul | For m ~ dagger[char[x]]"' >
(x) <Mat hFul | Form *~ dangl e[char[x]]"' >

dx <mat hFul | Form "~ diff[char[x]]"' >

o x <mat hFul | Form " diver[char[x]]" >

oo <mMat hFul | Form ~ downbrace[char[x]]"' >
expx <Mat hFul | Form “exp[char[x]]' >

% <Mat hFul | Form " exi sts[char[x]]" >

x| <Mat hFul | Form " fact[char[x]]" >

| x| <mMat hFul | Form " floor[char[x]]"' >

Ox <Mat hFul | Form ~foral |l [char[x]]"' >
(x) <mat hFul | Form “id[char[x]]" >

[x] <Mat hFul | Form “id[(*i li*)char[x]]"' >
{x} <Mat hFul | Form “id[(*i2i *)char[x]]"' >
imagx <Mat hFul | Form “i mag[char[x]]"' >

x>

<mMat hFul | Form "~ ket [char[x]]"' >

214

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Example MathFullForm statement

02x <Mat hFul | Form "l ap[char[x]]" >

Inx <mMat hFul | Form "I n[char[x]]"' >

(x <Mat hFul | Form " | paren[char[x]]"' >

[x <mMat hFul | Form * | paren[(*i li *)char[x]]"' >
{x <mMat hFul | Form " | paren[(*i 2i *)char[x]]"' >
—X <Mat hFul Form "~ mi nus[char[x]]"' >

X <Mat hFul | Form “np[char[x]]"' >

aX <Mat hFul | Form "~ neg[char[x]]"' >

I <mMat hFul | Form “nornf char[x]]"' >

X <Mat hFul | Form "~ overline[char[x]]"' >

ox <Mat hFul | Form “partial [char[x]]"' >

+X <Mat hFul | Form ~pn{char[x]]"' >

realx <Mat hFul | Form “real [char[x]]"' >

X) <Mat hFul | Form " rparen[char[x]]"' >

x] <mMat hFul | Form “rparen[(*i li*)char[x]]"' >
x} <Mat hFul | Form ~rparen[(*i 2i *)char[x]]"' >
secx <mMat hFul | Form "~ sec[char[x]]"' >

sechx <Mat hFul | Form " sech[char [x]]"' >

X <mMat hFul | Form "~ sem col on[char[x]]"' >
sgnx <mMat hFul | Form "~ sgn[char[x]]"' >

sinx <mMat hFul | Form "~ sin[char[x]]"' >

sinhx <mMat hFul | Form "~ sinh[char[x]]"' >

tanx

<mMat hFul | Form “tan[char[x]]"' >

215

ADOBE FRAMEMAKER 6.0

MIF Equation Statements

Example MathFullForm statement

tanhx <mMat hFul | Form ~tanh[char[x]]"' >

Ox <mMat hFul | Form ~therefore[char[x]]"' >
X <mMat hFul | Form ~ucomma[char[x]]"' >
=X <Mat hFul | Form "~ uequal [char[x]]"' >

X <Mat hFul | Form "~ upbrace[char[x]]' >
-

X <mMat hFul | Form “var[char[x]]"' >

Binary operators

Binary operators have two operand expressions. One of the binary operators, sn (scientific notation), has
two display formats. The following table contains an example of each binary operator with char [x] asa

sample operand.

Example MathFullForm statement
{xx} <mMat hFul | Form ~acnut[char[x], char[x]]"' >
X® X <Mat hFul | Form "~ bul l et[char[x], char[x]]"' >
Xx) <Mat hFul | Form "~ bket[char[x],char[x]]"' >
(X) <Mat hFul | Form " choi ce[char[x], char[x]]"' >
X
[%,X] <Mat hFul | Form "~ crnut [char[x], char[x]]"' >
X X X <mMat hFul | Form "~ cross[char[x],char[x]]"' >
X = X <mMat hFul | Form ~div[char[x],char[x]]"' >
X/ X <Mat hFul | Form ~fract[char[x], char[x]]"' >
X(x) <mMat hFul | Form "~ function[char[x],char[x]]"' >
Ax <Mat hFul | Form ~ function[oppartial [char[x]],char[x]]' >
ox
dx <Mat hFul | Form "~ function[optotal [char[x]],char[x]]"' >
dx

(x.x)

<mMat hFul | Form " i nprod[char[x], char[x]]"' >

216

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Example MathFullForm statement
limx <Mat hFul | Form “linfchar[x],char[x]]"' >
X
X <Mat hFul | Form "~ over[char[x],char[x]]"' >
X
XX <mMat hFul | Form "~ power[char[x], char[x]]"' >
<Mat hFul | Form “sn[char[x], char[x]]' >
x10 [char[x], char [x]]
XE X <Mat hFul | Form ~sn[(*i li *)char[x],char[x]]"' >

a. Partial and full differentials are a special case of f uncti on.

N-ary operators

N-ary operators have two or more operand expressions. When one of these operators has more than two
operands, a FrameMaker product displays an additional operand symbol for each operand expression. For
example, the following table shows several forms of pl us.

Example MathFullForm statement

1+2 <mat hFul | Form “plus[nun{1,"1"],nun{2,"2"]]"' >

1+2+3 <mat hFul | Form “plus[nuni{1,"1"],nun{2,"2"],nun{3,"3"]]"' >
1+2+3+4 <mMat hFul | Form

“plus[nun{1,"1"],nun{2,"2"],nun{ 3,"3"],nun{4,"4"]]"' >

The following table contains an example of each n-ary operator. Each example shows two operands.

Example MathFullForm statement

X <Mat hFul | Form * atop[char[x], char[x]]"' >

X

X=X <Mat hFul | Form "~ approx[char[x], char[x]]"' >
X N X <Mat hFul | Form "~ cap[char[x],char[x]]"' >

X [X <Mat hFul | Form ® cdot[char[x], char[x]]"' >
X, X <mMat hFul | Form * conma[char[x], char[x]]"' >
x [IX <Mat hFul | Form * cong[char[x], char[x]]"' >

x O x

<Mat hFul | Form °

cup[char[x],char[x]]"' >

217

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Example MathFullForm statement

X = X <Mat hFul | Form " equal [char[x], char[x]]"' >

X = X <Mat hFul | Form "~ equi v[char[x], char[x]]"' >

X > X <Mat hFul | Form "~ geq[char[x],char[x]]"' >

X » X <Mat hFul | Form " gg[char[x],char[x]]' >

X > X <Mat hFul | Form "~ greaterthan[char[x],char[x]]' >
x [0 X <mMat hFul | Form “in[char[x],char[x]]' >

X O X <Mat hFul | Form "~ jotdot[char[x],char[x]]"' >

X < X <Mat hFul | Form “l eftarrow char[x],char[x]]"' >
x [0 X <Mat hFul | Form ~ Leftarrow char[x],char[x]]"' >
X < X <mMat hFul | Form "l eq[char[x],char[x]]"' >

X < X <Mat hFul | Form " | esst han[char[x], char[x]]"' >
X <Mat hFul | Form " list[char[x],char[x]]"' >

X « X <Mat hFul | Form “ I | [char[x],char[x]]"' >

X o X <Mat hFul | Form “ I rarrowf char[x],char[x]]"' >
X o X <mMat hFul | Form ~ LRarrow{ char[x],char[x]]"' >
X [IX <mMat hFul | Form " ni[char[x],char[x]]"' >

X Z X <Mat hFul | Form ® not equal [char[x], char[x]]"' >
x [0 X <mMat hFul | Form “notin[char[x],char[x]]"' >

x [x <Mat hFul | Form "~ not subset[char[x],char[x]]"' >
x O X <mMat hFul | Form "~ oplus[char[x], char[x]]"' >

x [x <Mat hFul | Form "~ oti mes[char[x], char[x]]"' >

x || x <mMat hFul | Form "~ paral l el [char[x],char[x]]"' >
x [x <Mat hFul | Form * perp[char[x], char[x]]"' >

X+ X

<mMat hFul | Form * plus[char[x], char[x]]"' >

218

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Example MathFullForm statement

X — X <Mat hFul | Form “plus[char[x], mi nus[char[x]]]"' >
x [X <Mat hFul | Form "~ propto[char[x], char[x]]"' >

X - X <Mat hFul | Form “rightarrow char[x], char[x]]' >
X = X <Mat hFul | Form ~ Ri ghtarrow| char[x], char[x]]' >
x [IX <mMat hFul | Form “sinfchar[x],char[x]]"' >

x [0 X <mMat hFul | Form *~ subset[char[x], char[x]]"' >

x [x <Mat hFul | Form "~ subseteq[char[x], char[x]]"' >

x [x <Mat hFul | Form "~ supset[char[x], char[x]]"' >

x [X <Mat hFul | Form "~ supseteq[char[x], char[x]]"' >
XX <mMat hFul | Form " tines[char[x],char[x]]"' >

x [IX <Mat hFul | Form "~ vee[char[x],char[x]]"' >

x [OX <mMat hFul | For m ~ wedge[char[x], char[x]]"' >

Large operators

Large operator expressions have one primary operand. In addition, they can have one or two range
operands. The following table contains an example of each large operator with only one operand with
char [x] asasample operand.

Example MathFullForm statement
n X <Mat hFul | Form * bi gcap[char[x]]"' >
[]X <Mat hFul | Form ~ bi gcup[char[x]]"' >

[

<mat hFul | Form °

int[char[x]]"' >

dx

<Mat hFul | Form °

oint[char[x]]"' >

|_|X

<Mat hFul | Form

prod[char[x]]"' >

ZX

<Mat hFul | Form

“sunfchar[x]]"' >

219

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Expressions with range operands have multiple display formats that change how operands are positioned
around the symbol. Extended unions and intersections have two display formats. The formats are the same
for both expressions; as an example, the following table shows the two display formats for an intersection
with three operands:

Example MathFullForm statement
3 <Mat hFul | Form
“bigcap[nun{1.0,"1"],nun{2.0,"2"],nun{3.0,"3"]]" >
N 1
2
31 <mMat hFul | Form
Ny “bigcap[(*ili*)nun{1.0,"1"],nunf{2.0,"2"],nun{3.0,"3"]]" >

Sums, products, and integrals have three display formats. The formats are the same for all of these
operators; as an example, the following table shows the display formats for an integral with three operands.

Example MathFullForm statement

b <Mat hFul | Form “int[char[x],char[a],char[b]]"' >

[

a

Jb <Mat hFul | Form “int[(*ili*)char[x],char[a],char[b]]"' >
aX

<Mat hFul | Form “int[(*i2i *)char[x], char[a],char[b]]"' >

Expressions with optional operands

Some expressions have optional operands. In these expressions, the optional operands follow the primary
operand. The following table contains an example of each expression with optional operands.

Example MathFullForm statement

Ox <mMat hFul | Form "~ grad[char[x]]"' >

0,1 <mat hFul | Form ~grad[nun{ 1, "1"],nun{2,"2"]]"' >
logx <mMat hFul | Form "l og[char[x]]" >

|ngx <mMat hFul | Form "l og[char[x],char[x]]"' >

220

ADOBE FRAMEMAKER 6.0 [221
MIF Equation Statements

Example MathFullForm statement

) <Mat hFul | Form "~ oppartial [char[x]]"' >

0x

ax <Mat hFul | Form "~ oppartial [char[x],char[x]]"' >

ox

d <Mat hFul | Form "~ optotal [char[x]]"' >

dx

dX <Mat hFul | Form "~ optotal [char[x],char[x]]"' >

dx

J;(<Mat hFul | Form “sqrt[char[x]]"' >

X <Mat hFul | Form “sqrt[char[x],char[x]]"' >

X/x

X| <Mat hFul | Form "~ substitution[char[x]]"' >

X| <Mat hFul | Form "~ substitution[char[x],char[x]]"' >
X

X’X <Mat hFul | Form " substitution[char[x],char[x],char[x]]"' >
X

For partial and full differentials (such as g—))((and %), see page 216.

Indexes

There are three expressions for describing indexes: i ndexes, chem and t ensor.

indexes: Thei ndexes expression describes any number of subscripts and superscripts. The first operand
is the number of superscripts and the second operand is the number of subscripts. Subsequent operands
define the subscripts and then the superscripts.

Note: Note that the number of superscripts is listed before the number of subscripts. However, superscript
operands are listed after subscript operands.

The following table contains an example of each i ndexes form.

Example MathFullForm statement
X, <mMat hFul | Form " i ndexes[0, 1, char[x],nun{1,"1"]]"' >
X <Mat hFul | Form

12 “indexes[0,2,char[x],nun{1,"1"],nun{2,"2"]]" >

1 <mMat hFul | Form " i ndexes[1, 0,char[x],nun{1,"1"]]"' >

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Example MathFullForm statement
12 <Mat hFul | Form
X “indexes[2,0,char[x],nun{1,"1"],nun{2,"2"]]" >
2 <Mat hFul | Form
Xq “indexes[1,1,char[x],nun{1,"1"],nun{2,"2"]]" >
34 <Mat hFul | Form
X12 “indexes[2,2,char[x],nun{1,"1"],nun{2,"2"],nun{ 3, "3"], num
[4,74"]]" >

chem: The chemexpression defines pre-upper and pre-lower indexes, subscripts, and superscripts. Each
position can have one expression. The following table shows all possible forms of chem

Example MathFullForm statement
X <mat hFul | Form " chen{ 1,0, 0, 0, char[x], nun{1,"1"]]"' >
1 <mat hFul | Form ~cheni 0, 0, 1, 0, char[x], nun{ 1, "1"]]"' >
X
1 <Mat hFul | Form
oX “chen{1,0,1,0,char[x],nun{1,"1"],nun{2,"2"]]" >
X <Mat hFul | Form
172 “chen{1,1,0,0,char[x],nun{1,"1"],nun{2,"2"]]" >
12 <Mat hFul | Form
X “chen{0,0,1,1,char[x],nun{1,"1"],nun{2,"2"]]" >
1 <Mat hFul | Form
2Xg “chen{1,1,1,0,char[x],nun{1,"1"],nun{2,"2"],nun{3,"3"]]"' >
12 <Mat hFul | Form
3X “chen{1,0,1,1,char[x],nun{1,"1"],nun{2,"2"],nun{3,"3"]]"' >
12 <Mat hFul | Form
3%y “chen{1,1,1,1,char[x],nun{1,"1"],nun{2,"2"], nuni 3,"3"], nu

n4, 741" >

tensor: Thet ensor expression represents specially formatted tensor notation. The first operand
describes the position of the tensor indexes; subsequent operands define the indexes. The leftmost tensor
index corresponds to the least significant bit of the first operand in binary format; the rightmost index
corresponds to the most significant bit. 0 is the subscript position; 1 is the superscript position. The
following table shows forms of t ensor.

Example MathFullForm statement
« 2 <Mat hFul | Form “tensor[2, char[x],nun{1,"1"],nun{2,"2"]]"' >
1
1 <mMat hFul | Form “tensor[1, char[x],nun{1,"1"],nun{2,"2"]]" >
X
2

222

ADOBE FRAMEMAKER 6.0 [223
MIF Equation Statements

Example MathFullForm statement
1 <Mat hFul | Form
X 23 “tensor[1,char[x],nun{1,"1"],nun{2,"2"], nun{ 3,"3"]]" >
23 <Mat hFul | Form
X1 “tensor[6,char[x],nun{1,"1"],nun{2,"2"], nun{ 3,"3"]]"' >
2 <Mat hFul | Form
X1 3 “tensor[2,char[x],nun{1,"1"],nun{2,"2"], nun{ 3,"3"]]" >
13 <Mat hFul | Form
X “tensor[5,char[x],nun{1,"1"],nun{2,"2"], nun{ 3,"3"]]" >
3 <Mat hFul | Form
X12 “tensor[4,char[x],nun{1,"1"],nun{2,"2"], nun{ 3,"3"]]" >
12 <Mat hFul | Form
3 “tensor[3,char[x],nun{1,"1"],nun{2,"2"], nun{ 3,"3"]]"' >
Matrices

Themat ri x expression defines a matrix. The first operand is the number of rows in the matrix; the second
operand is the number of columns. Subsequent operands are expressions representing the elements of the
matrix. The elements are listed from left to right and from top to bottom. The mat r i x expression has an
alternate display format. The following table shows examples of mat ri x.

Example MathFullForm statement
<Mat hFul | Form “matrix[1,1, char[x]]"' >
[x]
<Mat hFul | Form “matrix[(*ili*)1,1,char[x]]"' >
X
r <Mat hFul | For m
123 “matrix[2,3,nun{1,"1"],nunf2,"2"],nun{3,"3"],nun{4,"4"],n
456 un{5,"5"], nun{6,"6"]]" >

r <Mat hFul | Form
12 "matrix[3,2,nun{1,"1"],nun{2,"2"],nun{3,"3"],nun{4,"4"],n
34 un{5,"5"], nun{6,"6"]]" >

56

Custom operators

The following expressions allow you to use custom operators that have been defined on a math reference
page:

Expression Definition

newi nfi x[x, y] Inserts custom infix operator

ADOBE FRAMEMAKER 6.0
MIF Equation Statements

Expression Definition

newpr ef i x[x] Inserts custom prefix operator
newpost fi x[x] Inserts custom postfix operator
newf uncti on[x] Inserts custom function operator
new arge[X, Yy, z] Inserts custom large element
newdel i m ter[x] Inserts custom delimiter

new imt[x,y] Inserts custom limit function
newl ist[Xx,y, z] Inserts custom vertical list

The expressions that insert new custom operators must include the name of the custom operator from the
reference page. For example, suppose a document has a custom operator MyFunct i on that is added to the
DMat hCat al og statement as follows:

<Divat hCat al og
<Divat hNew
Nanmes the new operator
<Divat hOpNarme *~ MyFunction' >
Specifies the operator type
<Diat hNewType Function>
> # end of DMvat hNew
> # end of Dwat hCat al og
The corresponding Mat hFul | For mstatement appears as follows:

<mat hFul | Form “newf unction[(*T"MyFunction"T*)[char[x]]]"'>

You do not use one of the custom operator expressions to insert a redefined math operator in an equation.
Instead, you use the expression for the built-in operator, but force a FrameMaker product to use the new
symbol from the reference page. For example, suppose you redefine the built-in operator asi n and add it
to the Math Catalog as follows:

<Divat hCat al og
<Dwvat hOpOverri des
Names the built-in operator
<Divat hOpNane "asin' >
Forces | ookup fromreference page
<Diat hOpTLi neOverri de Yes>
> # end of DMat hOpOverri des
> # end of DwMat hCat al og
You would use the following Mat hFul | For mstatement:

<mat hFul | Form “asin[(*T"I nverse Si ne"T*)operands]' >

where the string " I nver se Si ne" is the name given to the frame on the reference page.

224

ADOBE FRAMEMAKER 6.0 | 225
MIF Equation Statements

Sample equations
The following examples show Mat hFul | For mstatements for complete equations.

Example 1

—b+ J/b?—4ac

X =
2a

<wmat hFul | Form
“equal [char[x], over[plus[m nus[char[b]], pnfsqrt[plus[power[char[b], nuni2,"2"]
], minus[times[nun{4,"4"],char[a],char[c]]]]]]],times[nun{2,"2"],char[a]]]]' >

Example 2

(g, _(X=R) M j B
o [1+ 202(E0 ~ El)MZ /(0(Ey - Ey))

<Mat hFul | Form

“appr ox[power [char[sigma], mnus[nun{1,"1"]1]],fr ct[ld[plus[nun{1 "1"],times[o
ver[ld[plus[char[X],m'nus[char[R]]]] times[nuni2,"2"], power[char[SIgna] nuni 2,
"2"]1],id[rightarrow i ndexes[O, 1, char[E],nun{O,"O]],|ndexes[0 1, char[E], nunf1,
1]]]]]] over[lndexes[o 1, char[l\/] nun 2, "2"]], power [i ndexes[0, 1 char[M nuni 1
, 1]],nun{2 '2"111111 ., |d[t|mes[char[mgma],id[rlghtarrow[lndexes[o 1, char[E]
nun{ 0,"0"]],indexes[0,1,char[E],nun{1,"1"]1]]1]111]1]" >

226

MIF Asian Text Processing Statements

This chapter describes the MIF statements used to express Asian text in a document. It includes character
encoding statements, combined Asian and Western fonts, Kumihan tables, and rubi text.

Asian Character Encoding

Western text in a MIF file is written out as 7-bit ASCII. However, 7-bit encoding is insufficient for Asian
text. Asian text in MIF files is represented by double-byte encoding. There are different encoding schemes
for each supported language, and the MIF file must include a statement that can be used to determine
which encoding to use.

The MIF file can be edited with an Asian-enabled text editor on the platform on which the MIF was
written. If the text in a MIF file is in more than one Asian language, then only the language of the MIF
encoding statement will be directly readable in a text editor. All other non 7-bit ASCII text will be
backslashed escaped using the MIF backslash x convention.

MIFEncoding statement for Japanese

FrameMaker recognizes two encoding schemes for Japanese; Shift-JIS and EUC. The Macintosh and
Windows versions of FrameMaker write Shift-JIS for Japanese text, and the UNIX versions of FrameMaker
write out EUC. The MIF can converted between Shift-JIS and EUC using a Japanese text conversion utility.
The MIF encoding statement is converted along with the text in the MIF file.

To determine which encoding was used, each MIF file that contains Japanese text must include a M FEn-
codi ng statement near the beginning of the file. It must appear before any Japanese text in the file. The
string value in the M FEncodi ng statement is the Japanese spelling of the word “Nihongo,” which means
Japanese. FrameMaker reads this fixed string and determines what the encoding is for it. From that,
FrameMaker expects the same encoding to be used for all subsequent 8-bit text in the document.

To see the characters spelling the word Nihongo, you must view the MIF file on a system that is enabled for
Japanese character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax
<M FEncodi ng ° HFEE > # ori ginally witten as Japanese (Shift-JIS)
<M FEncodi ng ° BFEEE > # ori ginally witten as Japanese (EUC)

MIFEncoding statement for Chinese

FrameMaker recognizes three encoding schemes for Chinese; Bigs and CNS for Traditional Chinese, and
GB2312-80 for Simplified Chinese. The Macintosh and Windows versions of FrameMaker write Big5 for
Traditional Chinese text, and the UNIX versions of FrameMaker write out CNS for Traditional Chinese
text. All platform versions of FrameMaker write GB2312-80 for Simplified Chinese.

ADOBE FRAMEMAKER 6.0 | 227
MIF Asian Text Processing Statements

To determine which encoding was used, each MIF file that contains Chinese text must include a M FEn-
codi ng statement near the beginning of the file. It must appear before any Chinese text in the file. The

string value in the M FEncodi ng statement is the Chinese spelling of the word “Chinese”. FrameMaker
reads this fixed string and determines what the hexadecimal encoding is for it. From that, FrameMaker

expects the same encoding to be used for all subsequent Asian text in the document.

To see the characters spelling the word “Chinese”, you must view the MIF file on a system that is enabled
for Chinese character display. When the MIF is displayed on a Roman system, the characters appear
garbled.

Syntax

<M FEncodi ng ':F@[‘> # originally witten as Traditional Chinese (Big5)
<M FEncodi ng ':F‘j[‘> # originally witten as Traditional Chinese (CNS)
<M FEncodi ng ':F@[‘> # originally witten as Sinplified Chinese

MIFEncoding statement for Korean

FrameMaker recognizes one encoding scheme for Korean: KSC5601. All platform versions of FrameMaker
write KSC5601 for Korean.

Each MIF file that contains Korean text must include aM FEncodi ng statement near the beginning of the
file. It must appear before any Korean text in the file. The string value in the M FEncodi ng statement is
the Korean spelling of the word “Korean.” FrameMaker reads this fixed string and determines what the
hexadecimal encoding is for it. From that, FrameMaker expects the same encoding to be used for all subse-
quent Asian text in the document.

To see the characters spelling the word “Korean.”, you must view the MIF file on a system that is enabled
for Korean character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax
<M FEncodi ng ° @%O‘] > # originally witten as Korean

Combined Fonts

Combined fonts assign two component fonts to one combined font name. This is done to handle both an
Asian font and a Western font as though they are in one font family. In a combined font, the Asian font is
the base font, and the Roman font is the Western font. For example, you can create a combined font named
Mincho-Palatino that uses Mincho for Asian characters and switches to Palatino for Roman characters.

When reading a MIF paragraph that uses Mincho-Palatino, FrameMaker displays Asian characters in
Mincho and Roman characters in Palatino. If the Mincho font is not installed on the user’s system,
FrameMaker displays the Asian text in a font that uses the same character encoding as Mincho.

CombinedFontCatalog statement

Combined fonts are defined for the document in the Conbi nedFont Cat al og statement. For each
combined font, there is a Combi nedFont Def n statement that specifies the combined font name and

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

identifies the Asian and the Roman component fonts. Note that the combined font catalog must precede
the first Pgf Font and Font statements in the document.

Syntax

<Combi nedFont Cat al og

<Conbi nedFont Def n Defines a single combined font
<Conbi nedFont Nanme string> The name of the combined font
<Combi nedFont BaseFami |y string> The name of the Asian component
font
<Combi nedFont West ernFam |y string> The name of the Roman component
font
<Combi nedFont West er nSi ze percent > The size of the Roman component

font, expressed as a percentage of
the base font size; allowed values are
1.0% through 1000.0%

<Combi nedFont West er nShi ft percent > The baseline offset of the Roman
font, expressed as a percentage of
the base font size where a positive
value raises the Roman baseline
above the Asian baseline; allowed
values are -1000.0% through
1000.0%

<Conbi nedFont BaseEncodi ng keywor d> Specifies the encoding for the base
font.

keywor d can be one of:
J1 SX0208. ShiftJIS
Bl G5

GB2312- 80. EUC
KSC5601- 1992

<Conbi nedFont Al | owBaseFami | yBol dedAndOol i qued Yes allows a simulation of the bold

bool ean> or italic Asian component font to be
used if Bold or Italic/Oblique is
applied to the combined font.

> End of the Conbi nedFont Def n
statement

More Conbi nedFont Def n state-
ments as needed

> End of the Conbi nedFont Cat a-
| og statement

Example

The following is an example of a combined font catalog:

228

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

<Conbi nedFont Cat al og
<Conbi nedFont Def n
<Conbi nedFont Name *~ MyConbi nedFont ' >
<Conbi nedFont BaseFam |y "~ Gsaka' >
<Conbi nedFont West ernFam |y " Ti nes' >
<Conbi nedFont West er nSi ze 75. 0%
<Conbi nedFont West ernShi ft 0. 0%
<Conbi nedFont BaseEncodi ng " JI SX0208. Shi ftJI S' >
<Combi nedFont Al | owBaseFani | yBol dedAndOol i qued Yes>
> # end of Conbi nedFont Def n
> # end of Conbi nedFont Cat al og

PgfFont or Font statement

When a combined font is used in a paragraph or text line, the Pgf Font or Font statement includes the
combined font name and the base font’s family name. These statements also include the PostScriptName
and PlatformName for both the base and the Roman fonts.

FConbi nedFont Nane is a new statement to express the combined font name. The FFani | y statement
expresses the base font’s family name.

The FPost Scri pt Name and FPI at f or mNane statements all refer to the base font. The following new
statements have been added to express the corresponding values for the Roman font:

« FWést er nPost Scri pt Nane
- FWest er nPl at f or nNanme

Syntax
<Pgf Font
<FPost Scri pt Name string> The PostScript name for the base font
<FPI at f or mMNan®e string> The platform name for the base font
<FWest er nPost Scri pt Nane string> The PostScript name for the Roman font
<FWest er nPl at f or mNanme string> The platform name for the Roman font
<FConbi nedFont Nane string> The name of the combined font, as defined in the com-

bined font catalog

229

ADOBE FRAMEMAKER 6.0 {230
MIF Asian Text Processing Statements

<FEncodi ng string> Specifies the encoding for the base font. This is to specify
the encoding for a double-byte font. If not present, the
default is Roman.

keywor d can be one of:
JI SX0208. shiftJI'S
Bl G5

GB2312- 80. EUC
KSC5601- 1992

> End of the PgfFont statement

Example
The following is an example of a combined font in a Par a statement:

<Par a

<Uni que 996885>

<Pgf Tag " Body' >

<Par alLi ne

<Font
<FTag "'>
<FPl| at f or mMName ~ M Gsaka. P' >
<FWesternPl atformNane "M Ti nes. P' >
<FFam |y "~ Csaka'>
<FConbi nedFont Nanme * MyConbi nedFont' >
<FEncodi ng " JI SX0208. shiftJI S >
<FLocked No>

> # end of Font

<String " Conbi nedFont St atenment ' >
<Font
<FTag "'>
<FPl at f or mMNane ~M Gsaka. P' >
<FWesternPl atformNane ~M Ti nes. P' >
<FFam |y "~ Csaka'>
<FConbi nedFont Nanme * MyConbi nedFont ' >
<FWei ght ~ Medi unm >
<FEncodi ng " JI SX0208. ShiftJI S >
<FLanguage Japanese>
<FLocked No>

> # end of Font

<String CiHRR >

> # end of Paraline

ADOBE FRAMEMAKER 6.0 [231
MIF Asian Text Processing Statements

> # end of Para

Kumihan Tables

Kumihan tables specify line composition rules for Japanese documents. FrameMaker uses standard JIS
4051 Kumihan rules by default. In most cases, the JIS standard is fine, but there are cases where corporate
standards might differ from the JIS rules.

Kumihan tables are associated with a document. To customize the Kumihan tables for a document, you
specify the tables in MIF. Then you can import the MIF into an existing document, or into a template you
will use to create new documents.

Understanding Kumihan tables

Kumihan tables specify line composition rules by assigning characters to various classes, and then speci-
fying four tables of rules that apply to the characters of each class.

The Char d ass statement assigns each character to one of 25 classes. For example, the BegPar ent heses
cl ass andthe EndPar ent heses class are defined by the following MIF statements, and they contain
the characters shown in the statement.

<BegPar ent heses ™ “{[[{#T[' >
<EndPar ent heses " *'™1liral' >
For more information on the Char Cl ass statement, see “CharClass statement” on page 234.

The four statements that define the tables of rules that apply to the characters of each class are
SqueezeTabl e, SpreadTabl e, Li neBr eakTabl e, and Ext r aSpaceTabl e. Each of these statements
specify the actions FrameMaker takes for the characters in each of the 25 classes.

For example, the Li neBr eakTabl e statement specifies whether a line break can occur between a character
of one class and a character of another class. Here is an example of a Li neBr eakTabl e statement that
specifies when a line break can occur between a character in the BegPar ent heses class and a character
in each of the 25 classes:

<BegParentheses 1111111111111111111311111>

The 25 numerical values for the BegPar ent heses statement specify the actions FrameMaker takes
when a character from each of the 25 classes, such as an ending parenthesis character, follows a character
in the BegPar ent heses class. The position of each numerical value after the BegPar ent heses
statement specifies the class. For example, the first position is the BegPar ent heses class, the EndPar -
ent heses class is the second position, and so on. If anumerical value of 0 is specified, FrameMaker allows

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

a line break between a character the BegPar ent heses class and a character in the class specified in that
position in the statement. If a value of 1 is specified, FrameMaker does not allow a line break.

— BaseChar Wt hSuper
— BaseChar Wt hRubi
— Nurer al

— Par enBegi nWari Chu
w ParenEndWari Chu

— Sparel
— Spare2
— Spare3
— Spare4d

— NoLi neBegi nChar
— Spare5

— QuestionBang
— NonSepar abl eChar
— Precedi ngSynbol

— Succeedi ngSynbol

— Asi anSpace
— Hiragana

— BegParent heses
— EndPar ent heses
— Ohers

— CenteredPunct
— PeriodComma
— Uni t Symbol

— RomanSpace

 RomanChar

<BegPar ent heses

The column position of each numerical value in the statement specifies the action
to take for each class.

In the preceding example, a line break does not occur between a character in the BegPar ent heses class
and a character in the EndPar ent heses class because the value 1 is in the second position, which is the
column position for the EndParentheses class of characters. For more information on the Li neBr eak-
Tabl e statement, see “LineBreakTable statement” on page 238.

Writing Kumihan tables as MIF

FrameMaker only writes out Kumihan tables in MIF when you are running FrameMaker on Asian system
software. If you are running on an Asian system, when you save a document as MIF, the Kumihan tables
are written out as part of the document.

This is most critical with the character classes. To specify a character class in MIF, you must be able to type
the character and save it in a text file. The standard Western system doesn’t include these character sets in
its character code page, so these characters would appear garbled. You need the Asian system to represent
the characters in a text file.

To see an example of a Kumihan table, it is best to save a document as MIF, open the MIF on an Asian
system in a text editor, and search for the Kuni hanCat al og statement.

Specifying Kumihan tables in MIF
The following statements specify the Kumihan catalog and all of its component tables.

KumihanCatalog statement

The Kuni hanCat al og statement begins the Kumihan table specification for the document. Note that the
Kumihan catalog is not included in the <Document > block, but is in a block of its own.

Each Asian language can have its own Kumihan tables. This means that one Kumihan catalog can have up
to four sets of tables, one set for each of the four supported Asian languages (Japanese, Traditional Chinese,
SimpleChinese, and Korean).

232

Syntax

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

<Kum hanCat al og

<Kum han Defines a Kumihan table set
<Kumi han Additional Kumihan table sets as needed (one for each
Asian language - up to four per document)
> End of Kum hanCat al og statement

Kumihan statement

The Kumi han statement defines a set of Kumihan tables. A document can have one set of tables for each of

the four supported Asian languages.

Syntax

<Kum han

Defines a Kumihan table

<Kl anguage keyword>

The language for this table

keywor d can be one of:
Japanese

Tradi tional Chi nese
Si npl eChi nese

Kor ean

<Char d ass

Defines character class assignments

<SqueezeTabl e

Defines the squeeze table

<SpreadTabl e

Defines the spread table

233

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

<Li neBr eakTabl e

Defines the line break table

<ExtraSpaceTabl e

Defines the extra space table

Ends the Kum han statement

CharClass statement

The Char Cl ass statement assigns individual characters to one of 25 classes. The JIS standard recognizes
20 classes, and MIF includes an additional five classes (Spar el through Spar e5) so you can assign

characters custom character classes.

MIF Statement Column Description
Position
<Char C ass

<BegPar ent heses chars> 1 The characters to use as opening parentheses

<EndPar ent heses chars> 2 The characters to use as ending parentheses

<NoLi neBegi nChar chars> 3 Characters that cannot start a new line of text

<Questi onBang chars> 4 Characters for questions and exclamations

<Cent er edPunct chars> 5 Punctuation characters that must be centered between
characters

<Peri odComma chars> 6 Punctuation that is not centered

<NonSepar abl eChar chars> 7 Characters that cannot have line breaks between them

<Pr ecedi ngSynbol chars> 8 Characters such as currency symbols (¥ or $)

<Succeedi ngSynbol chars> 9 Characters such as % or ° (degree)

<Asi anSpace chars> 10 Characters for spaces in Asian text

<Hi ragana chars> 11 The set of hiragana characters

<Ot hers> 12 All characters not assigned to any class automatically
belong to <Gt her s>

<BaseChar Wt hSuper chars> 13 FrameMaker uses this class to allow spreading between
the end of a footnote and the next character. Do not
assign any characters to this class.

<BaseChar Wt hRubi chars> 14 The rubi block, including oyamoji and rubi text. This class
has to do with Rubikake and Nibukake rules that specify
how to handle spacing between a rubi block and an adja-
cent character.

<Nurrer al chars> 15 Characters for numerals

<Uni t Synbol chars> 16 This class is not used by FrameMaker

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

MIF Statement Column Description
Position
<RomanSpace chars> 17 Characters for spaces in Roman text
<RomanChar chars> 18 Characters for Roman text
<Par enBegi nWari Chu char s> 19 The current version of FrameMaker does not support War-

ichu; this class is not used by FrameMaker

<Par enEndWari Chu char s> 20 The current version of FrameMaker does not support War-
ichu; this class is not used by FrameMaker

<Sparel chars> 21 Reserved for a user-defined character class
<Spar e2 chars> 22 Reserved for a user-defined character class
<Spar e3 chars> 23 Reserved for a user-defined character class
<Spar e4 chars> 24 Reserved for a user-defined character class
<Spar e5 chars> 25 Reserved for a user-defined character class
> End of the Char C ass statement
Usage

Assigning characters to a class identifies them in the succeeding tables so the various typographical rules
can be specified for each class of character.

Any character that is not assigned to a class is automatically assigned to the < her s> class. When speci-
fying classes, you should not assign any characters to <& her s>. In fact, it is not necessary to include a MIF
statement for <& her s>. In the following tables, the 12th column position corresponds to the <Ct her s>
class.

If you are using Asian system software, you can enter the characters for each class directly in a text file.

Example
The following is an example of a portion of a Char C ass statement:
<Char d ass

<BegPar ent heses ™ “{[[{#T[' >

<EndPar ent heses "™ 11 Hual' >
<NoLi neBegi nChar "+ ¥ #¥¥—&uSa®ow¥LbFa2c4e¥1aons' >

> # end of Chard ass

SqueezeTable statement

The SqueezeTabl e statement defines how to compress the space surrounding characters of each class.
Note that each character is rendered within a specific area. For Asian characters, this area is the same for
each character. These rules determine how to compress this area for optimum line rendering.

235

ADOBE FRAMEMAKER 6.0 [236
MIF Asian Text Processing Statements

Syntax

<SqueezeTabl e

<SqueezeHori zontal nuneral s> Defines how to squeeze horizontal text
<SqueezeVertical numeral s> Defines how to squeeze vertical text
> End of SqueezeTabl e statement

The possible values for nuner al s are:

0 - Nosqueeze

- Half squeeze from top or left

- Half squeeze from bottom or right

- Quarter squeeze from all sides

Same as 3, but do not apply vertical squeeze to a semicolon
- This character pair should not have occurred

GO WNPE
'

Usage

The SqueezeHor i zont al and SqueezeVerti cal statementsinclude 25 numerical values, one for each
character class. The values are separated by a space. An example of a squeeze table statement is:

<SqueezeTabl e

e D — g

g €5 8 S5 2

$$6 - ﬁgg B & -6

" n D O (O] > g._

gg:%%gﬁ%%m - - [0} c g

- = Do QA C O C O zz Bo,_._g

5585805 58¢ s £8E32
;_;_m._;_'cQﬁmwmm66ﬁ>w6mmr|(\lmvLn
CC C e ©O QD OC O v chHhccccood o o
ﬂ.ﬂ.._mg._woommwwwguggww,_,_,_L,_
32"“":5:“’%""588:'EooEESSSSS
BE208826832x08 825288833535
<SqueezeHori zont al 1120032000000050001200000
<SqueezeVerti cal 1200420000000500012000000

> # end of SqueezeTabl e

In the preceding example, the SqueezeHor i zont al value for a character in the NoLi neBegi nChar class
is 2, which specifies half squeeze from the right.

SpreadTable statement

The Spr eadTabl e statement defines how to reduce the squeeze that was applied to adjacent characters.
There are 25 statement rows in this table, each corresponding to the 25 character classes, respectively.

There are 26 numeric values in each statement row. The first 25 values correspond to the 25 character
classes, respectively. The 26th value corresponds to the beginning or end of a line. These values specify how
to spread a character of the class identified by the row statement, when followed by a character in the class
identified by the column position in the statement.

Syntax

<SpreadTabl e

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

<BegPar ent heses nuneral s>

<EndPar ent heses numeral s>

<NoLi neBegi nChar nureral s>

<Questi onBang nuneral s>

<Cent er edPunct nuneral s>

<Peri odComma nuneral s>

<NonSepar abl eChar nuneral s>

<Pr ecedi ngSynbol nureral s>

<Succeedi ngSynbol nuneral s>

<Asi anSpace nuneral s>

<H ragana nuneral s>

< hers>

<BaseChar W t hSuper nuneral s>

<BaseChar Wt hRubi nureral s>

<Nureral nureral s>

<Uni t Synbol nuneral s>

<RomanSpace nuneral s>

<RomanChar nureral s>

<Par enBegi nWari Chu numeral s>

<Par enEndWari Chu nuneral s>

<Spar el nuneral s>

<Spar e2 numeral s>

<Spar e3 nuneral s>

<Spar e4 nuneral s>

<Spar e5 nuneral s>

End of Spr eadTabl e statement

237

ADOBE FRAMEMAKER 6.0 {238
MIF Asian Text Processing Statements

The possible values for nuner al s are:

- No spread

- Spread the first character of the pair by 1/2 em

- Spread the second character of the pair by 1/2 em

- Spread the first character of the pair by 1/4 em

- Spread the second character of the pair by 1/4 em

Spread both characters of the pair by 1/4 em

- Spread the first character by 1/2 em and the second character by 1/4 em

- Add spread to the first character of an Asian/Roman character pair

- Add spread to the second character of a Roman/Asian character pair

- Delete the first occurance of the two spaces; for example, delete the first of two adjacent Roman space characters

- Nibukake - Rubi may extend over the preceding nibukake, but it cannot exceed the nibukake; add space to the first
oyamoji character

11 - Nibukake - Rubi may extend over the following nibukake, but it cannot exceed the nibukake; add space to the last

oyamoiji character

12 - Allow rubi text to extend over oyamoji character when betagumi; no space is added

13 - Place oyamoji character with rubi based on the standard rule

14 - Double yakumono - Double yakumono rule is applied

15 - This character pair should not have occurred

CQOWWO~NOOUIAWNEO
'

=

Usage

Each statement row in the spread table includes 26 numerical values, one for each character class, and an
added value for the characters at the beginning or the end of a line. The values are separated by a space. An
example of a spread table is:

<SpreadTabl e

.- a5 2
8 £33 &3 2
$$6 - 6g§ B T 5
n un D O (O] > L Cc —
£8:25e:5%s z: ¥
- - Do A4 S>3 zz 3.5 28
cc%ccahc._mm [.gcuﬂscn'c
[EI) o o C .— T QcC © © — Q_6q.)c
:_:_G.)._LUQ.UG)U)@(/)66G>\U) O W AN WO
C © € - OO0 O O L CO L) c ccc OO OO
D_D_._my._(l)ooﬂsclsmmmgyggmmhhhhh
OO0T d 0 C o Cﬂ)O._s_Eg g Sz S Eaggggg
E0 23838 2a3Lrt8 835888355885
<BegPar ent heses 10 004000000001 000001000001
4 2 5 5
<EndPar ent heses 1111411110111 1111111111101
4 0 5

> # end of SpreadTabl e

In the preceding example, no spread occurs between a character in the BegPar ent heses class and a
character in the Quest i onBang class because the value 0 (No spread) is in the fourth position, which is
the column position for the Quest i onBang class of characters.

LineBreakTable statement

The Li neBr eakTabl e statement defines how to break lines between characters. There are 25 statement
rows in this table, each corresponding to the 25 character classes, respectively.

There are 25 numeric values in each statement row. Each value corresponds to one of the 25 character
classes, respectively. These values specify how to break a line after a character of the class identified by the
row statement, when followed by a character of the class identified by the column position.

ADOBE FRAMEMAKER 6.0 [239
MIF Asian Text Processing Statements

Syntax

<Li neBr eakTabl e

<BegPar ent heses nuneral s>

<EndPar ent heses numeral s>

<NoLi neBegi nChar nureral s>

<Questi onBang nuneral s>

<Cent er edPunct nuneral s>

<Peri odComma nuneral s>

<NonSepar abl eChar nuneral s>

<Pr ecedi ngSynbol nureral s>

<Succeedi ngSynbol nuneral s>

<Asi anSpace nuneral s>

<Hi ragana nuneral s>

< hers>

<BaseChar Wt hSuper numeral s>

<BaseChar Wt hRubi nureral s>

<Nurer al nuneral s>

<Uni t Synbol nuneral s>

<RomanSpace nuneral s>

<RomanChar nureral s>

<Par enBegi nWari Chu nuneral s>

<Par enEndWari Chu nuneral s>

<Spar el numeral s>

<Spar e2 numeral s>

<Spar e3 nuneral s>

<Spar e4 nuneral s>

<Spar e5 numeral s>

> End of Li neBr eakTabl e statement

ADOBE FRAMEMAKER 6.0 | 240
MIF Asian Text Processing Statements

The possible values for nuner al s are:

0 - Line break is allowed

1 - Line break is not allowed

2 - Break the line according to Roman text rules
3 - This character pair should not have occurred

Usage

Each statement row in the line break table includes 25 numerical values, one for each character class. The
values are separated by a space. An example of a line break table is:

<Li neBr eakTabl e

- — i g
8 g5 8 S 5 2
ggﬁ - 6.2'@ n X -6
n o O 9} > c < g._
ggcgggﬁﬁgw - -) =
H*_:EH:DD. T DD C O ;; BU;.._g
ccwc-c8;_c._<l$ﬂ$ [.gclscum'c
O o Mo o C .— T QcCc C © — 0.609::
:_Lu)._:_UD.UG)U)(\'S(n66 S > N O W om0
cscuc._.mo(%mmccns_ N c ccc vowdovoO
OO - OV o - oommmmmgwggmmhhhhh
?Eo%g5 5lSs-Ss8eS5css56s588388
ET0 208226832088 25228 835838
<BegPar ent heses 1111111111111 111111300000
<EndPar ent heses 01 11110000000O0O00O0ODO0ODO0D1O0000O00O

> # end of LineBreakTable

In the preceding example, a line break can occur between a character in the EndPar ent heses class and
a character in the NonSepar abl eChar class because the value 0 (Line break is allowed) is in the seventh
position, which is the column position for the NonSepar abl eChar class of characters.

ExtraSpaceTable statement

The Ext r aSpaceTabl e statement defines how to add extra space between characters when needed for full
justification. There are 25 statement rows in this table, each corresponding to the 25 character classes,
respectively.

There are 25 numeric values in each statement row. Each value corresponds to one of the 25 character
classes, respectively. These values specify how to add space after a character of the class identified by the
row statement, when followed by a character of the class identified by the column position.

Syntax

<ExtraSpaceTabl e

<BegPar ent heses nuneral s>

<EndPar ent heses nuneral s>

<NoLi neBegi nChar nureral s>

<Questi onBang nuneral s>

ADOBE FRAMEMAKER 6.0 [241
MIF Asian Text Processing Statements

<Cent er edPunct nuneral s>

<Peri odComma nuneral s>

<NonSepar abl eChar nuneral s>

<Pr ecedi ngSynbol nureral s>

<Succeedi ngSynbol nuneral s>

<Asi anSpace nuneral s>

<H ragana nuneral s>

< hers>

<BaseChar W t hSuper nuneral s>

<BaseChar Wt hRubi nureral s>

<Nurer al nureral s>

<Uni t Synbol nuneral s>

<RomanSpace nuneral s>

<RomanChar nureral s>

<Par enBegi nWari Chu numeral s>

<Par enEndWari Chu nuneral s>

<Spar el nuneral s>

<Spar e2 numeral s>

<Spar e3 nuneral s>

<Spar e4 nuneral s>

<Spar e5 nuneral s>

> End of Ext r aSpaceTabl e statement

The possible values for nuner al s are:

0 - Extraspace is allowed

- Extra space is not allowed

- Add extra space to the last character of a Roman word

- Add extra space after a Roman character

Add extra space if the adjacent characters are one each of Japanese and Roman characters

- Delete one of two space characters. Note that FrameMaker does not use this action because the Smart Spaces feature
performs it automatically

This character pair should not have occurred

GO WNPE
'

[«2)
'

ADOBE FRAMEMAKER 6.0 [242
MIF Asian Text Processing Statements

Usage

Each statement row in the extra space table includes 25 numerical values, one for each character class. The
values are separated by a space. An example of a extra space table is:

<Ext raSpaceTabl e

- o — g
8 353 S5 2
$$6 - 6@@ n X 6
n o O) > c < g._
gg:%%gﬁ%(gzw - = [0} c 8
HaaL‘DD. T DD S O ;; 60;.._2
c:q.)c-c8=_c._ﬂ$c§ [.gcucum'c
O O Mo o C .— T 9C C © — D_60)C
v O .— o O Q.UG)U)(UU)66 S > N 0O W o~ mS LW
csmcymo(%mmccn_ N c cccvovoOOO
[o N N oomcﬁwwmgyggmmhhhhh
P2 o%%5 62888556885 88888
EE 238228326688 258888 38588
<BegPar ent heses 1111111111111 1 11011611111
<EndPar ent heses 1111111111111 111011111111

> # end of ExtraSpaceTable

In the preceding example, a extra space is not allowed between a character in the EndPar ent heses class
and a character in the Cent er edPunct class because the value 1 (Extra space is not allowed) is in the fifth
position, which is the column position for the Cent er edPunct class of characters.

Rubi text

Rubi text is a Japanese system for representing the pronunciation of words as a string of phonetic characters
(hiragana) directly above the word in question (oyamoji). A MIF file includes document-level statements
that describe the settings made in the Rubi Properties dialog box, as well as MIF statements for a rubi
composite.

A rubi composite includes both oyamaoji text and rubi text. If the document is structured, the rubi
composite contains an object tagged RubiGroup, the oyamaoji text, an element tagged Rubi, and the rubi
text.

Document statement

In addition to document preferences (see “Document statement” on page 99), the MIF Docunent
statement describes standard formats for rubi text. The rubi formatting substatements correspond to
settings in the Rubi Properties dialog box.

Syntax
<Docunent See page 99
<DRubi Si ze percent age> The size of the rubi characters, proportional to the
OR size of the oyamoji characters
Allowed values are 1.0% through 1000.0%

ADOBE FRAMEMAKER 6.0 {243
MIF Asian Text Processing Statements

<DRubi Fi xedSi ze point size The fixed size of the rubi characters in points only.

Either the DRubiSize statement or the DRubiFixedSize
statement can be specified, but not both in the same

document.
<DRubi Over hang bool ean> Yes allows rubi to overhang hiragana oyamoiji text
<DRubi Al i gnAt Bounds bool ean> Yes aligns all rubi and oyamoji characters at line
boundaries
<DW deRubi SpaceFor Japanese keywor d> Determines how to space rubi characters for Japa-

nese oyamoji that is wider than the rubi text

keywor d can be:
W de

Nar r ow
Proporti onal

<DNar r owRubi SpaceFor Japanese keyword> Determines how to space rubi characters for Japa-
nese oyamoji that is narrower than the rubi text

keywor d can be:
W de

Nar r ow
Proporti onal

<DW deRubi SpaceFor O her keywor d> Determines how to space rubi characters for
non-Japanese oyamoji that is wider than the rubi text

keywor d can be:
W de

Nar r ow
Proporti onal

<DNar r owRubi SpaceFor Ot her keywor d> Determines how to space rubi characters for
non-Japanese oyamoji that is narrower than the rubi
text

keywor d can be:
W de

Nar r ow
Proporti onal

> End of the Docunent statement

Example

<Docunent

<DRubi Si ze 50%

<DRubi Over hang Yes>

<DRubi Al i gnAt Bounds Yes>

<DW deSpaceFor Japanese Proporti onal >

<DNar r owSpaceFor Japanese Proporti onal >

<DW deSpaceFor O her

<DNar r owSpaceFor O her

> # end of Docunent

RubiCompositeBegin statement

Nar r ow>

Nar r ow>

ADOBE FRAMEMAKER 6.0
MIF Asian Text Processing Statements

The Rubi Conposi t eBegi n statement is always matched with a Rubi Conposi t eEnd statement.
Between them are the contents of the rubi composite; the oyamoji and the rubi text. A rubi composite can
occur anywhere in a Par al i ne statement. Also, anything that can occur within a Par al i ne, except
another rubi composite, can also occur between the Rubi Conposi t eBegi n and Rubi Conposi t eEnd

statements.

In a structured document, the rubi composite includes a RubiGroup element and a Rubi element.

Syntax

<Rubi Conposi t eBegi n>

Starts the rubi composite

<El ement For structured documents only - Defines the RubiGroup
element
Continue the RubiGroup element specification

> End of the RubiGroup element

<String string>

The oyamoji text

<Rubi Text Begi n>

Begins the rubi text

<El enent For structured documents only - Defines the Rubi element
Continue the Rubi element specification
> End of the Rubi element

<String string>

The rubi text

<Rubi Text End>

Ends the rubi text

<Rubi Conposi t eEnd>

Ends the rubi composite

Example - unstructured
<Paral i ne

<String ° kum han '>

<Rubi Conposi t eBegin
<String " AR’ >
<Rubi Text Begi n
<String "~ &¥#IE >
<Rubi Text End >

244

ADOBE FRAMEMAKER 6.0 | 245
MIF Asian Text Processing Statements

<Rubi Conposi teEnd >

> # end of Paraline

Example - structured
<Paral i ne

<String ‘Sone text '>

<Rubi Conposi t eBegi n
<El ement
<Uni que 123456>
<ETag ‘ Rubi Group’ >
<Attributes
#. . Typical MF to define attributes
> # end of Attributes
<Col | apsed No>
<Speci al Case No>
<AttributeDisplay Al Attributes>
> # end of El ement
> # end of Rubi ConpositeBegin
<String ‘Oyanpji text’'>
<Rubi Text Begi n
<El ement
<Uni que 123457>
<ETag ‘ Rubi’>
<Attributes
#. . Typical MF to define attributes
> # end of Attributes
<Col | apsed No>
<Speci al Case No>
<AttributeDisplay Al Attributes>
> # end of El enent
<String ‘Rubi text’>
<Rubi Text End>
<Rubi Conposi t eEnd>

<String ‘Sone nore text '>

> # end of Paraline

246

Examples

The examples in this appendix show how to describe text and graphics in MIF files. (The current examples
are valid only for unstructured documents.) You can import the MIF file into an existing FrameMaker
template, or you can open the MIF file as a FrameMaker document. In either case, if you save the resulting
document in MIF format, you will create a complete description of the document—not just the text or
graphics.

If you find any MIF statement difficult to understand, the best way to learn more is to create a sample file
that uses the statement. Use a FrameMaker product to edit and format a document that uses the MIF
feature and then save the document as a MIF file. Examine the MIF file with any standard text editor.

The examples in this appendix are provided online.

For a FrameMaker product on this Look here

platform

UNIX $FMHOME/ f mi ni t/ | anguage/ Sanpl es, where | anguage is the
language in use, such as usengl i sh

Macintosh The Sanpl es folder where MIF Reference is installed

Windows The sanpl es directory where MIF Reference is installed

Text example

This example shows a simple text file and the MIF file that describes it. If you are writing a filter program
to convert text files to MIF, your program should create a similar MIF file. The following text file was
created with a text editor:

M F (Maker Interchange Format) is a group of statenments that describe all text
and graphi cs understood by a FrameMaker product in an easily parsed, readable
text file. MF provides a way to exchange informati on between a FraneMaker
product and ot her applications while preserving graphics, docunent structure,
and format.

You can wite progranms that convert graphics or docunents into a MF file and
then inport the MF file into a FranmeMaker docunent with the graphics and
document formats intact.

A filter program translated the text file to produce the following MIF file:

<M FFi | e 6. 00> # ldentifies this as a MF file.
The macros bel ow are used only for the second paragraph of
text, to illustrate how they can ease the process of
MF generation.

define(pr, <Para ')

define(ep, "
define(ln,”

define(en,’

<Par a

ADOBE FRAMEMAKER 6.0
Examples

>')
<ParalLine <String')
>>')

First paragraph of text.

<Pgf Tag " Body' >

<Par aLi ne
<String
>

<Par aLi ne

<String °

>

<Par aLi ne
<String

>

<Par aLi ne
<String

>

<Par aLi ne
<String

>

<Par aLi ne
<String

>

<Par aLi ne
<String

>

>

#

<Pgf Tag> statenent forces a | ookup in the docunent’s

Paragraph Catal og, so you don't have to specify the format
in detail here.

#

One <Paraline> statement for each line in the paragraph.
Line breaks don’t natter; the MF interpreter adjusts line
breaks when the file is opened or inported.

"M F (Maker Interchange format) is a group of '>

statenments that describe all text and graphics '>

“understood by a FrameMaker product in an easily parsed, '>

“readable text file. MF provides a way to exchange ' >

“informati on between a FraneMaker product and other ' >

“applications while preserving graphics, docunent '>

“structure, and format. ' >

end of Para

#

Second paragraph of text.Macros defined earlier are used

here.

This paragraph inherits the format of the previous one,

247

ADOBE FRAMEMAKER 6.0 {248
Examples

since there's no Pgf Tag or Pgf statement to override it.
pr
In “You can wite prograns that convert graphics or docunents' en
In “into a MF file and then inport the MF file into a FraneMaker' en
I'n “docunent with the graphics and docunent formats intact.' en
ep
End of MF File

Bar chart example

This example shows a bar chart and the MIF file that describes it. This example is in the file
barchart. mf.

To draw the bar chart, you open or import the MIF file in a FrameMaker product. Normally, you would
create an anchored frame in a document, select the frame, and then import this file. The MIF statements
to describe the bar chart can be created by a database publishing application that uses the values in a
database to determine the size of the bars.

M ar ket Shares
100%™ I Brand F
I Brand |
75%
50%—
25%

1986 1987 1988 1989

<M FFil e 6. 00> # Generated by SoneChartPack 1.4; identifies this
as a MF file.
Chart title, in a text |ine.
Al objects in the chart are grouped, so they have the sane
Goup |ID.
<Text Li ne <G oupl D 1>
<Font <FFamily "Tinmes'> <FSize 14> <FPl ain Yes> <FBol d Yes>
<FDX 0> <FDY 0> <FDAX 0> <FNoAdvance No>
>

<TLOrigin 1.85" 0.21"> <TLAlignment Center> <String "~ Market Shares'>

ADOBE FRAMEMAKER 6.0
Examples

> # end of TextLine
Boxes for Brand F and Brand | | egends.
<Rect angl e <G oupl D 1>
<Fill 1>
<ShapeRect 1.36" 0.33" 0.38" 0.13">
>
<Rect angl e <Groupl D 1>
<Fill 4>
<ShapeRect 1.36" 0.54" 0.38" 0.13">
>
Text lines for Brand F and Brand | | egends.
<Text Li ne <G oupl D 1>
<Font <FSize 12> <FPl ain Yes>>
<TLOrigin 1.80" 0.46"> <TLAlignnent Left> <String “Brand F' >
>
Second text line inherits the current font fromthe
preceding text line.
<Text Li ne <G oupl D 1>
<TLOrigin 1.80" 0.67"> <TLAlignnent Left> <String “Brand |'>
>
Reset the current pen pattern and pen wi dth for subsequent
obj ects.
<Pen 0>
<PenWdth 0.500>
Axes for the chart.
<Pol yLine <G ouplD 1> <Fill 15>
<NunPoi nts 3> <Point 0.60" 0.08"> <Point 0.60" 2.35"> <Point 3.10" 2.35">
>
Tick marks along the y axis.
<Pol yLi ne <G oupl D 1>
<NunPoi nts 2> <Point 0.60" 1.83"> <Point 0.47" 1.83">
>
<Pol yLi ne <G oupl D 1>
<NunPoi nts 2> <Point 0.60" 1.33"> <Point 0.47" 1.33">
>
<Pol yLi ne <G oupl D 1>
<NunPoi nts 2> <Point 0.60" 0.83"> <Point 0.47" 0.83">
>
<Pol yLi ne <G oupl D 1>
<NunPoi nts 2> <Point 0.60" 0.33"> <Point 0.47" 0.33">

249

X-axis |abels.

<Text Li ne <G oupl D 1>
<TLOrigin 1.08" 2.51">

>

<Text Li ne <G oupl D 1>
<TLOrigin 1.58" 2.51">

>

<Text Li ne <G oupl D 1>
<TLOrigin 2.08" 2.51">

>

<Text Li ne <G oupl D 1>
<TLOrigin 2.58" 2.51">

>

<TLAI i gnment

<TLAI i gnment

<TLAl i gnnment

<TLAl i gnnment

Y-axis | abels.

<Text Li ne <G oupl D 1>
<TLOrigin 0.46" 1.92">

>

<Text Li ne <G oupl D 1>
<TLOrigin 0.46" 1.42">

>

<Text Li ne <G oupl D 1>
<TLOrigin 0.46" 0.92">

>

<Text Li ne <G oupl D 1>
<TLOrigin 0.46" 0.42">

>

Draw all the gray bars first,
Set the fill
pattern.

<Rect angl e <Groupl D 1>
<Fill 4>
<ShapeRect 0.97" 1.10"

>

<Rect angl e <Groupl D 1>
<ShapeRect 1.47" 1.47"

>

<Rect angl e <Groupl D 1>
<ShapeRect 1.97" 1.72"

>

<TLAl i gnnment

<TLAl i gnnment

<TLAI i gnrment

<TLAI i gnment

0.13" 1.25">

0.13" 0.88">

0.13" 0.63">

Cent er >

Cent er >

Cent er >

Cent er >

Ri ght >

Ri ght >

Ri ght >

Ri ght >

for the first bar;

<String °

<String °

<String °

<String °

<String °

<String °

<String °

<String °

ADOBE FRAMEMAKER 6.0

1986 ' >

1987 ' >

1988 ' >

1989 ' >

25% ' >

50% ' >

5% "' >

100% ' >

Examples

since they have the sanme fill.

the others inherit the fill

250

<Rect angl e <G oupl D 1>
<ShapeRect 2.47" 1.97"

>

Now draw al |
Set the fill

0.13"

pattern.

<Rect angl e <Groupl D 1>
<Fill 1>
<ShapeRect 1.10" 1.97"

>

<Rect angl e <Groupl D 1>
<ShapeRect 1.60" 1.72"

>

<Rect angl e <Groupl D 1>
<ShapeRect 2.10" 1.22"

>

<Rect angl e <G oupl D 1>
<ShapeRect 2.60" 0.85"

>

0.13"

0.13"

0.13"

0.13"

0.38">

t he bl ack bars,

for the first bar;

0.38">

0.63">

1.13">

1.50">

ADOBE FRAMEMAKER 6.0
Examples

since they have the sane fill.

the others inherit the fill

Define the group for all the objects to make the chart easier

to

mani pul ate after it's inported into a FraneMaker docunent.

<G oup <ID 1>

>

251

ADOBE FRAMEMAKER 6.0 | 252
Examples

Pie chart example

This example shows a pie chart and the MIF file that describes it. When the MIF in this sample is imported
into a page or graphic frame in a document, a FrameMaker product centers the chart in the page or graphic
frame. This example is in the file pi echart. mi f.

<M FFi |l e 6. 00> # Cenerated by xyzgrapher 3.5; identifies this as a
MF file.

F*

Al dinmensions are in points.
<Units Upt >

Set the current pen pattern, width, and fill pattern.

<Pen 0>

<PenWdth .5>

<Fill 0>
Draw the black arc.
Al arcs are part of the sanme circle, so they have the sane
ArcRect.
Al objects in the chart are grouped, so they have the sane
Goup |ID.

<Arc <G ouplD 1>
<ArcRect 12 11 144 144 > <ArcTheta 0> <ArcDTheta 58>
>
Continue cl ockwi se around the chart.
<Arc <Fill 5> <GrouplD 1>
<ArcRect 12 11 144 144 > <ArcTheta 58> <ArcDTheta 77>
>

<Arc <Fill 2> <G ouplD 1>

<ArcRect 12 11 144 144 > <ArcTheta 135> <ArcDTheta 108>

>

<Arc <Fill 4> <G oupl D 1>

<ArcRect 12 11 144 144 > <ArcTheta 243> <ArcDTheta 66>

>

<Arc <Fill 6> <G ouplD 1>

<ArcRect 12 11 144 144 > <ArcTheta 309> <ArcDTheta 51>

>

ADOBE FRAMEMAKER 6.0
Examples

Define the group for all the objects to nake the chart easier

to manipul ate after it's inported into a FraneMaker

docunent.

<Goup <ID 1> >

Custom dashed lines

A FrameMaker product provides eight predefined dashed line options. You can define a custom pattern for
dashed lines by using the DashedPat t er n statement within an Obj ect statement. This example is in the

filecust dash. m f.

<M FFil e 6.00>

This is a sparse dot-dash line.

<Pol yLi ne
<Pen 0>
<Fill 15>

<PenW dt h 4pt>
<hCol or "Bl ack' >
<DashedPat tern
<DashedSt yl e Dashed>
<NunfSegnent s 4>
<DashSegnment 10pt >
<DashSegnent 10pt >
<DashSegnent 0. 5pt>
<DashSegnent 10pt >
> # end of DashedPattern
<HeadCap Round>
<Tai | Cap Round>
<NunPoi nts 2>
<Point 1.0" 1">
<Point 7.5" 1">
> # end of Pol yLi ne
This is a very sparse dotted

l'i ne.

253

<Pol yLi ne
<DashedPat t ern

<DashedSt yl e Dashed>
<Nunegnents 2>
<DashSegnent 0. 5pt>
<DashSegnment 20pt >

<NunPoi nts 2>

end of

The polyline inherits round head caps and tail

the previous Pol yLi ne statenent.

<Point 1.0" 2">
<Point 7.5" 2">

<Pol yLi ne

<DashedPat tern
<DashedStyl e
<Nunegnent s
<DashSegnent
<DashSegnent
<DashSegment
<DashSegnent
<DashSegment
<DashSegnent
<DashSegnent
<DashSegment
<DashSegment
<DashSegment

>

<HeadCap Butt >
<Tai | Cap Butt>
<NunPoi nts 2>

<Point 1.0" 3"
<Point 7.5" 3"
>

<Pol yLi ne

<DashedPattern
<DashedStyl e

end of

DashedPattern

Pol yLi ne

This is a wild one!

Dashed>
8>
4pt > #
8pt >
12pt > #
16pt >
20pt > #
24pt >
20pt > #
16pt >
12pt > #
8pt >

end of

>
>

end of

This one has a m ssing DashSegnent statenent,

solid

solid

solid

solid

solid

DashedPattern

Pol yLi ne

ADOBE FRAMEMAKER 6.0
Examples

caps from

so the first

10-poi nt segnent is repeated with a default gap of 10 points.

Dashed>

254

ADOBE FRAMEMAKER 6.0 | 255
Examples

M ssing NunSegnents.
<DashSegnment 10pt >

M ssing a second DashSegnent.

This polyline inherits the butt cap and tail style
fromthe previous PolyLine statenent.
<NunPoi nts 2>
<Poi nt 1.0" 4">
<Point 7.5" 4">
> # end Pol yLi ne
This one is a really dense dotted |ine.
<Pol yLi ne
<DashedPattern
<DashedSt yl e Dashed>
<DashSegnent 1pt>
<DashSegnment 1pt>
>
This polyline also inherits the butt cap and tail style
fromthe previous PolyLine statenent.
<PenW dth 1pt>
<NunPoi nts 2>
<Poi nt 1.0" 5">
<Point 7.5" 5">
> # end Pol yLi ne

When you've defined a custom dashed line style in one FrameMaker document, you can easily copy and
paste the custom style into another document by pressing Shift and choosing Pick Up Object Properties
from the Graphics menu. For more information, see your user’s manual.

Table examples

You can use MIF to create a table or to update a few values in an existing table.

Creating an entire table

This example shows a table and the MIF file that describes it. This table is in the sample file
stocktbl.mf.

The widths of columns is calculated using MIF statements that are only for input filters. Rather than speci-
fying an exact width for each column, the table uses the substatement Tbl Col unrmW dt hA for two of the
columns to specify that the column width is determined by the width of a particular cell.

Column widths are further affected by the Equal i zeW dt hs statement, which sets the columns to the
width of the widest column within the limits specified by the Tbl Col unm substatements. As you examine

ADOBE FRAMEMAKER 6.0 | 256
Examples

this example, note how the column width statements interact: the column widths are originally set by the
applied table format from the Table Catalog. The Thl For mat statement then specifies how this table
instance’s column properties override those in the default format. The Equal i zeW dt hs statement
further overrides the format established by Tbl For nat .

Table 1: StockWatch

Mining and Metal 10/31/90 Weekly %
Close Change

Ace Aluminum $24.00 -3.50

Streck Metals $27.25 +2.75

Linbrech Alloys $63.75 -2.50

<M FFil e 6. 00> # Generated by StockWatcher; identifies this as a

MF file.
<Thbl s
<Tbl
<Tbl I D 1> # This table’s IDis 1.
<Tbl For mat

<Tbl Tag " Format A >
Forces a lookup in the Table Catalog with the foll ow ng
exceptions:
<Tbl Col um
<Tbl Col utmNum 0>
Shrink-wrap the first colum so it’s between 0 and 2 inches
wi de.
<Tbl Col utmW dt hA 0 2">
>
<Tbl Col um
<Tbl Col umNum 1>
Make 2nd colum 1 inch wide. This establishes a m nimm
width for the colums.
<Tbl Col umW dth 1">
>
<Tbl Col um
<Tbl Col utmNum 2>
Shrink-wap the third colum to the width of its heading
cell.
See Cel | AffectsCol utmW dt hA st at ement bel ow.
<Tbl Col umW dthA 0 2">

ADOBE FRAMEMAKER 6.0 | 257
Examples

> # end of Tbl For mat
The tabl e instance has three col ums.
<Tbl NumCol utms 3>
<Equal i zeW dt hs
Make the width of the second and third colums equal to
the larger of the two. However, the colums cannot be wi der
than 2 inches or narrower than 1 inch.
<Tbl Col utmNum 1>
<Tbl Col ummNum 2>

> # end of EqualizeCol Wdth
<ThlTitle
<Tbl Ti t | eCont ent
<Par a

Forces | ookup in Paragraph Catal og.
<Pgf Tag "TableTitle' >
<Par alLi ne
<String " StockWtch' >

> # end of Paraline
> # end of Para
> # end of Tbl Titl eContent
> # end of TblTitle
<Tbl H # The headi ng.
<Row # The heading row.

<Cel| <Cell Content <Para # Cell in colum O.
<Pgf Tag " Cel | Headi ng' > # Forces | ookup in Paragraph Catal og.
<ParalLine <String "M ning and Metal'>>>>

> # end of Cell

<Cel| <Cell Content <Para # Cell in colum 1

<Pgf Tag " Cel | Headi ng' > # Forces | ookup in Paragraph Catal og.
<ParaLine <String “10/31/90 C ose' >>>>
> # end of Cell

<Cel | <Cell Content <Para # Cell in colum 2
<Pgf Tag " Cel | Headi ng' > # Forces | ookup in Paragraph Catal og.
<Par aLine <String "Weekly % > <Char HardRet urn>>
<ParaLine <String " Change' >>>>
For shri nk-wr ap.
<Cel | Af f ect sCol umW dt hA Yes>
> # end of Cell

> # end of Row

ADOBE FRAMEMAKER 6.0

> # end of TblH

<Tbl Body # The body.

<Row # The first body row.

<Cell <Cell Content <Para

<Pgf Tag " Cel | Body' >
<Par aLine <String “Ace Al um nunm >>>>

end of Cell

Forces | ookup in Paragraph Catal og.

>

<Cel| <Cell Content <Para

<Pgf Tag " Cel | Body' >

<Par aLine <String "~$24.00"' >>>>
end of Cell

Forces | ookup in Paragraph Catal og.

>
<Cel | <Cell Content <Para

<Pgf Tag " Cel | Body' >
T-3.50" >>>>

Forces | ookup in Paragraph Catal og.

<Par ali ne <String
end of Cell

end of Row
The second body row.

>
>

<Row
<Cell <Cell Content <Para

<Pgf Tag " Cel | Body' >
<ParalLine <String “Streck Mtals'>>>>

end of Cell

Forces | ookup in Paragraph Catal og.

>

<Cel| <Cell Content <Para

<Pgf Tag " Cel | Body' >

<ParaLine <String "~$27.25' >>>>
end of Cell

Forces | ookup in Paragraph Catal og.

>

<Cel | <Cell Content <Para
<Pgf Tag " Cel | Body' >
<ParaLi ne <String " +2.75"' >>>>

end of Cell

end of Row

The third body row

Forces | ookup in Paragraph Catal og.

>
>

<Row
<Cel | <Cell Content <Para

<Pgf Tag " Cel | Body' >
<Par aLine <String "Linbrech Al oys'>>>>

end of Cell

Forces | ookup in Paragraph Catal og.

>
<Cel| <Cell Content <Para
<Pgf Tag " Cel | Body' >
<ParaLi ne <String "$63.75" >>>>
> # end of Cell

<Cel |l <Cell Content <Para

Forces | ookup in Paragraph Catal og.

Examples

258

ADOBE FRAMEMAKER 6.0 | 259
Examples

<Pgf Tag " Cel | Body' > # Forces | ookup in Paragraph Catal og.
<ParalLi ne <String "-2.50"'>>>>
> # end of Cell
> # end of Row
> # end of Tbl Body
> # end of Tbl
> # end of Tbls
<Text Fl ow <Par a
<Pgf Tag Body>
<Par aLi ne <ATbl 1>> # Reference to table 1D 1.

>>

Updating several values in a table
You can update several values in a table (or elsewhere in a document) by importing a MIF file.

To update a table, insert a table in a FrameMaker document and create user variables for the values you
want to update (see your user’s manual); then insert the variables in the table where you want them.

To change the values of the variables, create a MIF file with new variable definitions. You can create MIF
variable definitions from sources such as records in a database, values in a spreadsheet, or data gathered
from measurement equipment. For example, the following MIF file defines two variables:

<M FFil e 6.00>
<Vari abl eFor mat s
<Vari abl eFor mat
<Vari abl eName 90 Revenue'>
<Vari abl eDef " 2,342, 165" >
>
<Vari abl eFor mat
<Vari abl eName 91 Revenue'>
<Vari abl eDef ° 3, 145, 365' >
>>

When you import the MIF file into the document that contains the table, a FrameMaker product updates
the variables in the table.

Database publishing

This database publishing example shows how to use the data storage and manipulation capabilities of a
database and the formatting capabilities of a FrameMaker product through MIF.

Note: Although this example will work with most FrameMaker products, the example will not work with
FrameReader. FrameReader cannot read MIF files.

In this example, inventory information for a coffee distributor is stored in a database. Database fields
contain a reference number, the type of coffee, the number of bags in inventory, the current inventory

ADOBE FRAMEMAKER 6.0
Examples

status, and the price per bag. A sales representative creates an up-to-date report on the coffee inventory by
using a customized dialog box in the database application to select the category of information and sort

order:

Publish Price List

- 5dles Rep

Name |Darrell Dexter

Phone [(800) 555-1212 |

Discount

- Selection
Select Sort
All 0fferings | |By Coffee |

260

ADOBE FRAMEMAKER 6.0
Examples

When the sales representative clicks Publish, a database procedure scans the database, retrieves the
requested information, and writes a MIF file that contains all of the information in a fully formatted
document. The final document looks like this:

GREEN COFFEE PRICE LIST

Tl

COF

Too owger, conback: FEE 3SYSTEMS
Darrell Dexter GREEM COFFEE IMPORTERS
Sales Repre sntative SINCE 1879

Priro Cotfee Distributors

(B0 5551212

Offerings as of August 12, 1992

The data from the database is published as a FrameMaker table. The database procedure makes one pass
through the records in the database and writes the contents of each record in a row of the table. The
procedure then creates a Text FI owstatement that contains the text that appears above the table and
creates an ATbl statement to refer to the table instance.

You can set up a report generator like the previous example by following these general steps:

1 Create the template for the final report in a FrameMaker product. Design the master pages and body
pages for the document and create paragraph and character formats. You can include graphics (such as a
company logo) on the master page.

2 Create a table format for the report. Specify the table position, column format, shading, and title format.
Store the format in the Table Catalog.

3 When the document has the appearance you want, save it as a MIF file.

4 Editthe MIFfile to create a MIF template that you can include in your generated MIF file (see “Including
template files” on page 54). The MIF template used for this example is in the sample file cof f ee. mi f .

261

ADOBE FRAMEMAKER 6.0
Examples

5 Use your database to create any custom dialog boxes or report-generating procedures.

6 Create a database query, or procedure, that extracts data from the database and writes it out into a MIF
file. Use a MIF i ncl ude statement to include the document template in the new document.

The database user can now open a fully formatted report.

The code for the procedure that extracts information from the database and outputs the MIF strings is
shown in this appendix. This procedure is written in the ACIUS 4th DIMENSION command language.
You could use any database query language to perform the same task.

The procedure does the following:

7 Creates a new document.

8 Sends the M FFi | e identification line.

9 Usesi ncl ude to read in the formatting information stored in the template cof f ee. mi f .

10 Sends the MIF statements to create a table instance.

11 In each body cell, sends a field that includes the information extracted from the database.

12 Creates a text flow that uses the Text Rect | Dfrom the empty body page in the cof f ee. ni f template.
13 Includes the At bl statement that places the table instance in the document text flow.

14 Closes the document.

262

ADOBE FRAMEMAKER 6.0 {263
Examples

In the following example, database commands are shown like this: SEND PACKET. Comments are
preceded by a single back quote (). Local variables are preceded by a dollar sign ($).

"This procedure first gets the information entered by the user and stores it
in local variables:
* $1 = Name of sales representative
$2 = Phone number
$3 = Discount
CR:=char(13) " carriage return character
DQ:=char(34) * double quotation mark character
C_TIME(vDaoc)
CLOSE DOCUMENT(vDoc)
vDoc:=Create document("")
vDisc:=1-(Num($3»)/100)
“Send header.
SEND PACKET(vDoc;"<MIFFile 6.00> #Generated by 4th Dimension for
Version 6.0 of FrameMaker"+CR)
"Read in the MIF template for the report.
SEND PACKET(vDoc;"include (coffee.mif)"+CR)
“Generate table.
SEND PACKET(vDoc;"<Thls <Thl <ThlID 2> <TblFormat <ThlTag “Format
A>>"+CR)
SEND PACKET(vDoc;"<TbINumColumns 5> <TbIColumnWidth
.6"+DQ+">"+CR)
SEND PACKET(vDoc;"<TbIColumnWidth 3.25"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblColumnWidth .5"+DQ+">"+CR)
SEND PACKET(vDoc;"<TbIColumnWidth 1.7"+DQ+">"+CR)
SEND PACKET(vDoc;"<TbIColumnWidth 1.0"+DQ+">"+CR)
SEND PACKET(vDoc;"<ThlTitle"+CR)
SEND PACKET(vDoc;"<ThlITitleContent"+CR)
SEND PACKET(vDoc;"<Para <PgfTag "TableTitle’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String “Offerings as of "+String(Current
date;5)+">>>>>"+CR)
"Table Heading Row.
SEND PACKET(vDoc;"<ThlH <Row <RowMaxHeight 14.0"+DQ+"> "+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag
“CellHeading>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Ref No.'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag
“CellHeading>"+CR)
SEND PACKET(vDoc;"<ParaLine <String “Coffee'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag
“CellHeading>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Bags'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag
“CellHeading>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Status'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag

ADOBE FRAMEMAKER 6.0 | 264
Examples

‘CellHeading'>"+CR)

“Retail and Discount prices are conditional.
SEND PACKET(vDoc;"<ParaLine <Conditional <InCondition "Retail'’>>"+CR)
SEND PACKET(vDoc;"<String “Price per Bag™>"+CR)
SEND PACKET(vDoc;"<Conditional <InCondition ‘Discount'>> <String
“Discount Price'>"+CR)
SEND PACKET(vDoc;"<Unconditional> >>>>>>"+CR)

“Table Body.
FIRST RECORD([Inventory])
SEND PACKET(vDoc;"<TbIBody"+CR)
For ($n;1;Records in selection([Inventory])

“Change shading of row depending on inventory status.
If ([Inventory]Status="In stock")

vFill:="<CellFill 6> <CellColor "Green">"
Else
VFill:=" <CellFill 6> <CellColor 'Red">"

End if

“Compute discount price.

vDiscPrice:=[Inventory]Price per Bag*vDisc

RELATE ONE([Inventory]Name)

SEND PACKET(vDoc;"<Row <RowMaxHeight 14.0"+DQ+">"+CR)

SEND PACKET(vDoc;"<Cell "+VFill+" <CellContent <Para <PgfTag
"Number>"+CR)

SEND PACKET(vDoc;"<ParaLine <String “"+String([Inventory]Ref
Number;"###")+">>>>>"+CR)

SEND PACKET(vDoc;"<Cell "+VFill+" <CellContent <Para <PgfTag
‘Body">"+CR)

SEND PACKET(vDoc;"<ParaLine <String “"+[Inventory]Name+">>>"+CR)

SEND PACKET(vDoc;"<Para <PgfTag "CellBody'>"+CR)

SEND PACKET(vDoc;"<ParaLine <String
“"+[Beans]Description+"'>>>>>"+CR)

SEND PACKET(vDoc;"<Cell "+VFill+" <CellContent <Para <PgfTag
"Number>"+CR)

SEND PACKET(vDoc;"<ParaLine <String
“"+String([Inventory]Bags; "###")+"'>>>>>"+CR)

SEND PACKET(vDoc;"<Cell "+VFill+" <CellContent <Para <PgfTag
‘Body>"+CR)

SEND PACKET(vDoc;"<ParaLine <String
“"+[Inventory]Status+">>>>>"+CR)

SEND PACKET(vDoc;"<Cell "+VFill+" <CellContent <Para <PgfTag
"Number>"+CR)

SEND PACKET(vDoc;"<ParaLine <Conditional <InCondition
‘Retail>>"+CR)

SEND PACKET (vDoc;"<String “"+String([Inventory]Price per
Bag;"$#,###.00")+">"

SEND PACKET(vDoc;"<Conditional <InCondition "Discount'>>"+CR)

SEND PACKET(vDoc;"<String ""+String(vDiscPrice;"$#### ###.00")+">
"+CR)

ADOBE FRAMEMAKER 6.0 | 265
Examples

SEND PACKET(vDoc;"<Unconditional> >>>>>"+CR)
MESSAGE("Generating MIF for "+[Inventory]Name+", Status:
"+[Inventory]Status+".")
NEXT RECORD([Inventory])
End for
SEND PACKET(vDoc;">>>"+CR) “End of table.
‘Body of page.
SEND PACKET(vDoc;"<TextFlow <TFTag "A'> <TFAutoConnect Yes>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag "Heading'> <ParaLine <TextRectIlD
8>"+CR)
SEND PACKET(vDoc;"<String "GREEN COFFEE PRICE LIST> <AFrame
1>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag "Prepared'> <ParalLine <String "To
order, contact:'>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag "Body'> <ParaLine <String
+$1»+">>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String “Sales Representative’™>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Primo Coffee
Distributors'>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag "Body2'> <ParaLine "+CR)
SEND PACKET(vDoc;"<String ™"+String(Num($2»);"(##H) ##H-
#H#H")+">"+CR)
SEND PACKET(vDoc;"<ATbl 2> >>>"+CR) 'Send the anchor for the table
CLOSE DOCUMENT(vDoc)
ALERT("Your MIF file is awaiting your attention.")

Creating several tables

The previous example illustrates how to use a database to create one table instance. Both the Thl s and the
Text FI owstatements are written to a single text file. This approach, however, is limited to this simple case.
If the document contains several tables, it may be more convenient to use the database to write the Tbl s
statement to a separate file and then use a MIF i ncl ude statement to read the file into a FrameMaker
product.

ADOBE FRAMEMAKER 6.0
Examples

For example, suppose you need to publish a parts catalog. Each part has a name, a description, and a table
that gives pricing information. A typical record looks like this:

Valve Box Lids Put the part name and
For 5.25" Shaft Buffalo style valve boxes. Lids come in three styles: water, |—— description in a TextFl
gas, and sewer.

Marking Stock Number Price

Water 367-5044 $11.36 Put the table in a Thl s

| statement in a separate
Sewer 367-5046 $10.25 file.
Gas 367-5048 $12.49

In the database, all the information about each part is associated with its record. Due to the structure of
MIF, however, the information must appear in different portions of the MIF file: the part name and
description belong in the Text FI owstatement, while the table belongs in the Tbl s statement. To accom-
plish this, you can make the following modifications to the design of the database procedure shown in the
previous example.

- At the beginning of the procedure, create two text files—one for the main MIF file that will contain the
MIF file identification line and the main text flow and the other for the Thl s statement.

- Use a second i ncl ude statement to read in the Thl s statement

= As your procedure passes through each record, write the data that belongs in the Text FI ow statement
in the main text file and write the table data to the Thl s file.

If you are using 4th Dimension, the procedure should have the following statements:

vDoc:=CREATE DOCUMENT (") "Prompts user to name main file.
VvTbls:=CREATE DOCUMENT (Tbls.mif) "Hard codes name of include file.
SEND PACKET (vDoc;"<MIFFile 6.00> #File ID")
SEND PACKET (vDoc;"include (template.mif")
SEND PACKET (vDoc;"include (Tbls.mif")
As you process the records, you write the table data to the second include file by referring to the vTbls
variable in a SEND PACKET command. For example:

SEND PACKET (vThls; "<Cell <CellContent"+CR)
The main MIF file would have the following components;
<M FFil e 6.00> # File ID
include (tenplate.nmf) # MF tenpl ate
include (Tbls.mf) # Tabl e instances, created by
the database
<Text Fl ow # Main text flow

266

ADOBE FRAMEMAKER 6.0 [267
Examples

> # end of text flow

When a FrameMaker product opens the main MIF file, it will use the two i ncl ude statements to place the
data and template information in the required order.

Creating anchored frames

You can extend the technique of writing separate MIF files to handle both tables and graphics. Like table
instances, anchored frame instances must appear in the MIF file prior to the Text FI owstatement. If each
record contains a graphic or a reference to a graphics file on disk, you would create a separate text file called
AFr anes. mi f for only the AFr ames statement. Using the technique described in the previous section, you
would insert the code for the tables in the Thl s. ni f file, the graphics in the AFr anes. ni f file, and the
main text flow in the main text file. You use an i ncl ude statement to read in the AFr ames. ni f file.

Note: Remember to assign unique ID numbersin the Tbl | D statement for each table and the | D statement
for each frame.

268

MIF Messages

When the MIF interpreter reads a MIF file, it might detect errors such as unexpected character sequences.
In UNIX versions, the MIF interpreter displays messages in a console window. In the Macintosh and
Windows versions, you must turn on Show File Translation Errors in the Preferences dialog box to display
messages in a window (a console window in the Windows version). If the MIF interpreter finds an error, it
continues to process the MIF file and reads as much of the document as possible.

General form for MIF messages

The general form of all MIF messages is:

M F: Line LineNum Message

The Li neNummay be approximate because it represents the absolute line number in the file after all macros
in the file have been expanded. In addition, if you open the MIF file in a FrameMaker product, lines are
wrapped and the line numbers may change.

The Message portion consists of one of the messages in the following table. (Italicized words/characters
(for example, n) indicate variable words or values in a message.)

List of MIF messages
The tables in this section lists the MIF messages produced by the MIF interpreter and describes their

meanings.

This message Means

--- Skipping these chars: The MIF file contains a syntax error or a MIF statement
not supported in this version of the FrameMaker prod-

(MIF statements)... uct. The FrameMaker product ignores all MIF state-

__________ Done skipping. ments contained Wit_hin the erroneous or unsuppprted
MIF statement. The ignored MIF statements are listed
in the error message.

A footnote cannot contain another footnote. One footnote in the MIF file is embedded in another.

Bad parameter: parameter. The MIF file contains a syntax error.

Cannot connect to TRNext ID n. The text frame ID specified in a TRNext statement has
no corresponding defined text frame.

Cannot find anchored frame n. The graphic frame ID specified in an AFr anes state-
ment has no corresponding defined graphic frame.

Cannot find footnote n. The footnote ID specified in a FNot e statement has no
corresponding defined footnote.

ADOBE FRAMEMAKER 6.0
MIF Messages

This message

Means

Cannot find table ID n.

MIF cannot match <ATbl x> with an earlier <Tbl
<Tbl I D x>> statement.

Cannot find text frame ID n.

The text frame ID specified in a Text Rect | D state-
ment has no corresponding defined text frame.

Cannot open filename.

Make sure that the file exists and that you have read
access to it; then try again.

Cannot store inset’s facets.

The MIF file contains a graphic inset, but the MIF inter-
preter can’t store the graphic inset in the document.
There might be an error in the MIF syntax, or there
might not be enough temporary disk space available. In
UNIX versions, try to increase the space available in
your home directory or the / usr/ t nmp directory and
try again. In the Macintosh or Windows versions, try
quitting other applications and closing other open win-
dows; then start the FrameMaker product again.

Char out of range: character_value.

A character in a Char statement or a character
expressed using \ x in a string is out of range.

Condition settings must not change between <XRef>
and <XRefEnd>.

You cannot change a condition tag setting in the mid-
dle of a cross-reference. Make sure the entire cross-ref-
erence is contained in one condition setting.

DashedPattern statement has no DashedSegment
statements.

A DashedPat t er n statement gives DashedSt yl e a
value of Dashed but has no DashedSegnent state-
ments to define the dashed pattern.

Empty group: ID=n.

The group ID specified in a G- oup statement has no
corresponding defined objects with a matching group
ID.

Expected comma/identifier/left parenthesis/right
parenthesis/right quote.

The MIF file contains a syntax error.

Following <TabStop> statements will determine
actual number of tabs.

The Pgf NumTabs statement is present in MIF for use
by other programs that read MIF files; it is not used by
the MIF interpreter. When the MIF interpreter reads a
MIF file, it counts the number of TabSt op statements
to determine the number of tabs stops in a paragraph.

Frames are nested too deeply (over 10); skipping
statement.

There are too many nested frames. The maximum nest-
ing depth is 10.

Graphic frame has an invalid <Angle> attribute.

An invalid value is specified by the Angl e statement
for a graphic frame.

269

ADOBE FRAMEMAKER 6.0
MIF Messages

This message

Means

Insufficient memory!

The FrameMaker product cannot allocate enough
memory for one of its work buffers. In UNIX versions,
try to free some swap space and restart the
FrameMaker product. In the Macintosh or Windows
versions, try quitting other applications and closing
other open windows; then start the FrameMaker prod-
uct again.

Invalid opcode: op_code.

The MIF file contains a syntax error.

Macro/IncludeFile nesting too deep.

The define or include statements specify too many
nested levels of statements.

Missing dimension.

A necessary dimension value was not found in a MIF
statement.

No name was given for the cross-reference format:
format_definition.

The XRef Nane statement is not specified for a cross-
reference format.

No name was given for the variable definition:
variable_definition.

The Var i abl eNane statement is not specified for a
variable.

Object ignored; must come before <TextFlow> state-
ments.

All object statements must come before the first Tex-
t Fl owstatement in a MIF file.

Processing opcode op_code.

The FrameMaker product is currently processing the
specified opcode.

Skipped ‘string’.

The MIF file contains a syntax error.

String too long (over 255 characters); overflow
ignored.

The maximum string length is 255 characters.

Structured MIF statement ignored.

This version of the FrameMaker product does not sup-
port MIF statements used by FrameMaker+SGML. The
FrameMaker product does not read or write any of the
structured MIF statements specified in the MIF file.

Syntax error in <MathFullForm> statement.

The MIF file contains a syntax error in a Mat hFul | -
For mstatement.

Unable to start new object.

The FrameMaker product cannot allocate memory for
a new object. In UNIX versions, try to free some swap
space and restart the FrameMaker product. In the Mac-
intosh or Windows versions, try quitting other applica-
tions and closing other open windows; then start the
FrameMaker product again.

Unable to store marker.

The marker table is full. In UNIX versions, the
FrameMaker product is probably running out of swap
space. Try to free some swap space and restart the
FrameMaker product. In the Macintosh or Windows
versions, try quitting other applications and closing
other open windows; then start the FrameMaker prod-
uct again.

270

ADOBE FRAMEMAKER 6.0
MIF Messages

This message

Means

Unbalanced right angle bracket.

A right angle bracket (>) was found that has no corre-
sponding left angle bracket (<).

Unexpected opcode.

A statement was found in a context where it is not valid
(for example, an FFami | y statement in a Docunent
statement).

Unexpected right angle bracket.

Aright angle bracket (>) was found where a data value
was expected or was found outside a statement.

Unknown font angle.

The requested font angle is not available.

Unknown font family.

The requested font family is not available.

Unknown font variation.

The requested font variation is not available.

Unknown font weight.

The requested font weight is not available.

Unknown PANTONE name: string.

The name specified in the Col or Pant oneVal ue
statement is not the name of a valid PANTONE color.

Value of n out of range (mM).

A statement’s data value was too large or too small.

WARNING: Circular text flow was found and cut.

The MIF file defined a set of linked text frames resulting
in a circular text flow. (The last text frame in the flow is
linked to the first or to one in the middle.) The MIF
interpreter attempted to solve the problem by discon-
necting a text frame.

WARNING: Circular text flow. Don’t use the docu-
ment.

The MIF file defined a set of linked text frames resulting
in a circular text flow. (The last text frame in the flow is
linked to the first or to one in the middle.) The MIF
interpreter was unable to solve the problem. A
FrameMaker document file will open, but do not use it.

271

272

MIF Compatibility

MIF files are compatible across versions. However, some MIF statements have changed in version 5.5 of the
FrameMaker products. This appendix lists the MIF statements that are new or have changed in version 5.5
and describes how these statements are treated when an earlier version reads a MIF 5.5 file. The appendix
also lists changes between versions 5 and 4, and between versions 4 and 3 of the FrameMaker products.
MIF statements are listed by feature.

In general, when previous versions of FrameMaker products read new MIF statements, the new MIF state-
ments are stripped out and ignored. For example, if version 4 of FrameMaker reads a new 6.0 MIF
statement in a 6.0 MIF file, FrameMaker ignores the statement.

Changes between version 5.5 and 6.0

This section describes changes to MIF syntax between versions 5.5 and 6.0 of FrameMaker products.

Saving documents and books as PDF

FrameMaker documents now store information to support Structured PDF. DPDFSt r uct ur e is a new
statement added to Document that specifies whether or not the document contains structure information
to use when saving as PDF. Pgf PDFSt r uct ur eLevel has been added to the Pgf statement to assign a
structure level to paragraph formats.

Books and documents can also include arbitrary fields of Document Info information. Documents use the
PDFDocl nf o statement, and books use PDFBook|I nf o.

To improve handling of bookmarks hypertext links within and across PDF files, FrameMaker products
now store reference data within documents. Pgf Ref er enced identifies each paragraph that is marked as
a named destination; El ement Ref er enced similarly identified structure elements. If you like, you can
specify that the Save As PDF function creates a named destination for every paragraph in the document;
this is done via FP_PDFDest sMar ked within the Docunent statement.

Books

Version 6.0 of FrameMaker products has brought significant change to books. The book window now can
display the filename of each book component, or a text snippet from the component’s document. In MIF,
BDi spl ayText determines which type of information to display.

A book can also be view-only; MIF now includes BVi ewOnl y, BVi ewOnl yW nBor der s, BVi ewOnl yW n-
MenuBar , BVi ewOnl yPopup, and BVi ewOnl yNoOp statements to express whether a book is view-only,
and how it should appear.

ADOBE FRAMEMAKER 6.0 {273
MIF Compatibility

Book Components

Book components store numbering properties to use when generating a book. The following table shows
the new MIF statements for managing different types of numbering:

Volume Chapter Page Footnote Table Footnote
VolumeNumStart ChapterNumStart ContPageNum BFNoteStartNum BTbIFNoteNum-
Style
VolumeNumStyle ChapterNumStyle PageNumStart BFNoteNumStyle Y
BTbIFNoteLabels
VolumeNumText ChapterNumText PageNumStyle BFNoteRestart
BTbIFNoteCom-
VoINumCompute- ChapterNumCom- BFNotelLabels pute Method
Method puteMethod
BFNoteCompute-
Method
Documents

Because there are new numbering properties for documents and books, documents now have new
numbering statements. The following table shows the new MIF statements for managing different types of
numbering in documents:

Volume Chapter Page Footnote
VolumeNumStart ChapterNumStart ContPageNum DFNoteComputeMethod
VolumeNumStyle ChapterNumStyle PageNumStart

VolumeNumText ChapterNumText PageNumStyle

VoINumComputeMethod ChapterNumComputemethod

Changes between version 5 and 5.5

This section describes changes to MIF syntax between versions 5 and 5.5 of FrameMaker products.

Asian text processing

A section has been added to the MIF Reference to describe the new MIF statements that were added for
Asian text in a document. See “MIF Asian Text Processing Statements” on page 226. for more information.

MIF file layout

A MIF file can now include a Conbi nedFont Cat al og statement that contains Conbi nedFont Def n
statements to define each combined font for the document. The Conbi nedFont Cat al og statement must
occur before the Docunent statement. For information about combined fonts, see “Combined Fonts” on
page 227.

ADOBE FRAMEMAKER 6.0
MIF Compatibility

Control statements

A new control statement, Char Uni t s, has been added to express whether characters and line spacing is
measured by points or by Q (the standard units of measurement for Japanese typography). The keywords
for this statement are CUpt and CUQ

Document statements

The DPageNunst yI e and DFNot eNunt yI e statements have new keywords to express Japanese footnote
numbering formats. The new keywords are ZenLCAl pha, ZenUCAI pha, Kanj i Nuneri c, Kanj i Kazu,
and Busi nessKazu.

DTr apwi seConpat i bi | i ty isa new statement that determines whether generated PostScript will be
optimized for the TrapWise application.

DSuperscript Stretch, DSubscri pt Stretch,and DSmal | CapsSt r et ch are new statements that
specify the amount to stretch or compress superscript, subscript, or small caps text.

Color statements

MIF 5.5 now supports a number of color libraries. In the Col or statement, the Col or Pant oneVal ue
statement is no longer used. Instead, Col or Fami | yName specifies the color library to use, and

Col or I nkName identifies the specific pigment. Note that the full name must be provided for

Col or | nkNane.

The Col or statement can also express a tint as a percentage of a base color. Col or Ti nt Per cent age
specifies the percentage, and Col or Ti nt BaseCol or specifies the base color to use.

Col or Over pri nt isa new statement that assigns overprinting to the color. If a graphic object has no
overprint statement in it, the overprint setting for that object’s color is assumed.

Paragraph and Character statements

In version 5.5, the Pgf Font and Font statements can now include the FLanguage statement to define a
language for a range of text within a paragraph.

The PgfFont and Font statements include statements to describe combined fonts. For information on
combined fonts, see “Combined Fonts” on page 227.

The PgfFont and Font statements include a new FEncodi ng statement to specify the encoding used for the
font. The keywords for this statement are: JI SX0208. shiftJI'S, Bl G5, GB2312-80. EUC, or
KSC5601- 1992.

FStr et ch is a new statement to define the amount to stretch or compress a range of characters.

Text inset statements

The Ti Text and Ti Text Tabl e statements respectively include two new statements, Ti Txt Encodi ng
and Ti Txt Thl Encodi ng, to specify the text encoding for the source file. Both of these new statements can
have one of the following keywords: Ti | soLat i n, Ti ASCI I, Ti ANSI, Ti MacASCI |, Ti JI S,

Ti Shi ft JI'S, Ti EUC, Ti Bi g5, TI EUCCNS, Ti GB, Ti Hz, or Ti Kor ean.

274

ADOBE FRAMEMAKER 6.0 [275
MIF Compatibility

Marker statements

In FrameMaker 5.5, users can now define named custom markers. MTypeNane is a new statement to
specify the marker name. The MType statement is still written out for backward compatibility, but
FrameMaker 5.5 reads MrypeName when present.

Graphic object statements

If the Over pri nt statement is not present in a graphic object, the overprint setting for the object’s color
is assumed.

ObTi nt applies a tint to whatever color is assigned to the object. If the object’s color already has a tint, the
two tint values are added together.

Structured element definition statements
EDAt t r Hi dden is a new statement in the EDAt t r Def that specifies whether an attribute is hidden or not.

FStret chandFsSt r et chChange are new statements added to the Fnt ChangelLi st to specify how much
to stretch or compress the characters in an element.

Changes between versions 4 and 5

This section describes changes to MIF syntax between versions 4 and 5 of FrameMaker products.

Changes to existing MIF statements
In version 5, the following MIF statements have changed or now have additional property statements.
- Paragraph statements

- Character statements

- Table statements

- Document statements

- Text frame statements

- Text flow statements

- Graphic frame statements

- Text inset and data link statements

- Structured document statements

Version 5 also introduces a new internal graphic format for imported vector graphics.

Paragraph statements

In version 5, paragraphs can span all text columns and side heads or span columns only. As a result of this
change, the Pgf Pl acement St yl e statement now supports the additional keyword St r addl eNor ma-
I Onl y, which indicates that the paragraph spans text columns but not side heads.

ADOBE FRAMEMAKER 6.0 [276
MIF Compatibility

For supporting the capability to create PDF bookmarks from paragraph tags, the new Pgf Acr obat Level
statement has been added. This statement specifies the paragraph’s level in an outline of bookmarks.

For more information about the MIF syntax for paragraphs, see “Pgf statement” on page 72.

Character statements
In version 5, the FDX, FDY, and FDwstatements, which specify the horizontal kern value, the vertical kern
value, and the spread of characters, now measure in terms of the percentage of an em.

In previous versions, the FDX and FDY statements specified values in points. When reading MIF files from
previous versions, a FrameMaker product in version 5 will convert points into the percentage of an em.
Previous versions of FrameMaker products generate error messages when reading FDX and FDY statements
specifying percentages, since these products expect the kerning value in points.

Table statements

In version 5, tables can be aligned along the inside or outside edge (in relation to the binding of a book) of
a text column or text frame. As a result of this change, the Tbl Al i gnment statement now supports the
additional keywords | nsi de and Qut si de.

In addition, the existing Thl Ti t | eCont ent statement is now contained in the new Thl Ti t | e statement.

For more information about the MIF syntax for tables, see “Thl statement” on page 88.

Document statements

In version 5, the DAcr obat Bookmar ksl ncl udeTagNanes statement has been added under the
Docunent statement to support the conversion of paragraph tags to bookmarks in Adobe Acrobat. By
default, this statement is set to No.

Another new statement, DGener at eAcr obat I nf o, sets print options to the required states for gener-
ating Acrobat information. By default, this statement is set to Yes.

For Macintosh publishers, the new DLi nkBoundar i esOn statement specifies whether or not the bound-
aries of the publisher are visible.

For View Only documents, the default value of the DVi ewOnl ySel ect statement has changed from Yes
toUser Onl y.

For text insets, the following statement has been renamed:

MIF 4.00 MIF 5.00

<DUpdat eDat aLi nksOnCpen bool ean> <DUpdat eText | nset sOnCpen bool ean>

ADOBE FRAMEMAKER 6.0
MIF Compatibility

Document and text flow statements

In version 5, the MIF statements describing interline spacing and padding, which appeared under the
Docunent statement in previous versions, have been replaced by corresponding statements under the
Text FI owstatement:

MIF 4.00 MIF 5.00
<DMax| nt er Li ne di nensi on> <TFMaxI nt er Li ne di mensi on>
<DMax! nt er Pgf di mensi on> <TFMaxI nt er Pgf di mensi on>

Inversion 5, if a FrameMaker product finds the DMax|1 nt er Li ne and DMax| nt er Pgf statementsin a4.00
document, the FrameMaker product applies these settings to all flows in the document.

Text frame and text flow statements

Version 5 introduces text frames, which are composed of any number of text columns separated by a
standard gap. In MIF files, text frames are described by the same statement used in previous versions for
text columns, the Text Rect statement.

In version 5, three new statements have been added under the Text Rect statement to specify multicolumn
text frames:

e <TRNunmCol umms i nt eger >
e <TRCol utm@Gap di nensi on>
e <TRCol umBal ance bool ean>

When reading 5.00 MIF files, previous versions of FrameMaker products will remove these statements and
assume that the text frame is actually a single text column.

When reading MIF files from previous versions, a FrameMaker product in version 5 will convert multiple
text columns on a page into a single, multicolumn text frame. To represent each text column as a separate
text frame, include the MIF statement <TRNunCol urms 1> in the description of each Text Rect
statement.

Side head layout information has been transferred from the Text FI owstatement to the Text Rect
statement. The following statements, which appeared under the Text Fl owstatement in previous versions,
are replaced by corresponding statements under the Text Rect statement in 5.00:

MIF 4.00 MIF 5.00

<TFSi deheadW dt h di mensi on> <TRSi deheadW dt h di nensi on>
<TFSi deheadGap di nensi on> <TRSi deheadGap di nensi on>
<TFSi deheadPl acenment keyword> <TRSi deheadPl acenent keywor d>

If a FrameMaker product in version 5 finds the Text FI owMIF statements for side heads, the FrameMaker
product will convert these statements to the equivalent statements under the Text Rect statement.

277

ADOBE FRAMEMAKER 6.0 [278
MIF Compatibility

If these types of statements are found under both the Text Rect statement and the Text FI owstatement,
the statements under the Text Rect statement will be used.

Note that the existence of side heads in a text flow is still specified by the TFSi deheads statement, which
is under the Text FI owstatement.

For more information about the MIF syntax for text frames, see “TextRect statement” on page 138. For
more information about the MIF syntax for text flows, see “Text flows” on page 139.

Graphic frame statements

In version 5, graphic frames can be anchored inside or outside text frames. Graphic frames can also be
aligned along the inside or outside edge of a text frame (in relation to the binding of a book). Finally,
graphic frames can be anchored outside the entire text frame or one column in the text frame.

As a result, the following changes to 4.00 MIF have been made:

= The Fr aneType statement now supports the additional keywords | nsi de, Qut si de, and Runl nt o-
Par agr aph.
= The Anchor Al i gn statement now supports the additional keywords | nsi de and Cut si de.

= Version 5 introduces the new Anchor Besi de statement to indicate whether the graphic frame is
anchored outside the entire text frame (Text Fr ane) or outside one column in the text frame (Col umm).

= When editing FrameMaker document files from previous versions, the FrameMaker products assume
that this statement has the value <Anchor Besi de Col um>.

For more information about the MIF syntax for graphic frames, see “Frame statement” on page 125.

Text inset and data link statements

In previous versions, Macintosh versions of FrameMaker products allowed you to import text by reference
with the Publish and Subscribe mechanism. The MIF Dat aLi nk statement described text that was
published or subscribed.

In version 5, the capability to import text by reference, which creates a text inset, is available on all
platforms. As a result of this new feature, the new Text I nset statement replaces the Dat aLi nk state-
ments for subscribers.

Note that the Dat aLi nk statements for publishers are still used.

The following table lists the old Dat aLi nk statements and the new Text I nset statements that replace
them.

MIF 4.00 MIF 5.00

<Dat aLi nk. .. > <Textlnset...>

<DLSour ce pat hname> <Ti SrcFi | e pathnane>

<DLPar ent Format s Yes> <Ti Formatti ng Ti Encl osi ng>
<DLPar ent For mat s No> <Ti Formatti ng Ti Source>
<OnelLi nePer Rec bool ean> <ECLi SEOP bool ean>

ADOBE FRAMEMAKER 6.0 [279
MIF Compatibility

MIF 4.00 MIF 5.00
<MacEdi ti on integer> <Ti MacEdi tionld integer>
<Dat aLi nkEnd> <Text | nset End>

If you open a 5.00 MIF file with text insets in a version 4 FrameMaker product, the older version of the
product will strip out the text inset MIF statements. The text inset becomes plain text that cannot be
updated.

For more information about the MIF syntax for text insets, see “Text insets (text imported by reference)”
on page 148. For information about the MIF syntax for publishers, see “Publishers” on page 156.

Structured document statements

In version 5, FrameMaker does not support statements for structured documents, such as El ement Def -
Cat al og and DEI enent Bor der sOn. FrameMaker strips these statements when reading in a MIF file.
When writing out a MIF file, FrameMaker does not write these statements.

FrameVector graphic format

In version 5, a new internal graphic format, FrameVector, is supported for imported vector graphics. The
specifications for this facet are described in “FrameVector Facet Format” on page 304.

Changes between versions 3 and 4

This section describes the changes to MIF syntax between versions 3 and 4 of the FrameMaker products.

4.00 top-level MIF statements

The following table lists top-level statements introduced between versions 3 and 4 of the FrameMaker
products.

New statement Action in earlier versions
<Col or Cat al og..> All custom colors revert to Cyan
<Vi ews..> Ignored

Changes to 3.00 MIF statements

This section describes the statements that have changed or that have introduced additional property state-
ments between versions 3 and 4 of the FrameMaker products. MIF statements that have changed include;

- Color statements

- Math statements

- Character format statements
= Object statements

- Page statements

Color statements

ADOBE FRAMEMAKER 6.0
MIF Compatibility

The following table lists the changes for color property statements.

MIF 3.00

MIF 4.00

<FSepar ati on integer>

<FCol or string>

<CSepar ati on integer>

<CCol or string>

<Rul i ngSeparati on integer>

<Rul i ngCol or string>

<Separation integer>

<CbCol or string>

<Tbl HFSepar ati on integer>

<Tbl HFCol or string>

<Tbl BodySepar ati on integer>

<Tbl BodyCol or string>

<Tbl XSepar ati on i nteger>

<Tbl XCol or string>

<Cel | Separati on integer>

<Cel | Col or string>

<DChBar Separ ati on integer>

<DChBar Col or string>

Separ at i on values refer to the reserved, default colors that appear in the Color pop-up menu in the

FrameMaker Tools palette.

This value Corresponds to this color
<Separation 0> Black

<Separation 1> White

<Separation 2> Red

<Separation 3> Green

<Separation 4> Blue

<Separation 5> Cyan

<Separation 6> Magenta
<Separation 7> Yellow

Version 4 and later versions of FrameMaker products read separation statements and convert them to the
equivalent color statements. A FrameMaker product writes both color statements and separation state-
ments for backward compatibility. For the reserved default colors, a FrameMaker product writes the equiv-
alent separation value. For custom colors, a FrameMaker product writes the separation value 5 (Cyan) so
that you can easily find and change custom colors.

If your application creates files that will be read by both older (before version 4) and newer (after version
4) FrameMaker product versions, include both color and separation statements in the MIF files; otherwise,
use only the color statements.

280

ADOBE FRAMEMAKER 6.0 [{281
MIF Compatibility

Math statements

The following table lists the changes for math statements.

MIF 3.00 MIF 4.00
Dwat hlt al i cFuncti onNane DMat hFuncti ons
Dvat hlt al i cOt her Text Dvat hNurmber s, DMat hStrings, DMat hVari abl es

In addition, the di acri ti cal expression defines new diacritical marks (see “Using char and diacritical
for diacritical marks” on page 211). The di acri ti cal expression is not backward compatible.

Character format statements

The following table lists the changes in Font and Pgf Font statements.

MIF 3.00 MIF 4.00

<FUnder | i ne bool ean> <FUnder !l ini ng FSi ngl e>
<FDoubl eUnder | i ne bool ean> <FUnder | i ni ng FDoubl e>
<FNuneri cUnderl i ne bool ean> <FUnder !l ining FNuneric>
<FSupScri pt bool ean> <FPosi ti on FSuperscript>
<FSubScri pt bool ean> <FPosi tion FSubscript>

If your application only reads or writes files for version 4 or later versions of FrameMaker, use only the 4.00
statements. If your application reads or writes files for version 3 or previous versions of FrameMaker, use
only the 3.00 statements. Do not use both statements.

The MIF interpreter always reads the MIF 3.00 statements. It writes both 3.00 and 4.00 statements for
backward compatibility.

Object statements

The following table lists the changes in graphic object statements (see “Graphic objects and graphic
frames” on page 119).

MIF 3.00 MIF 4.00
<Angl e 0] 90| 180] 270 > <Angl e degrees>
<BRect > <ShapeRect >

Text lines, text frames, imported graphics, table cells, and equations that are rotated at an angle of 90, 180,
or 270 degrees retain rotation in earlier versions. If these objects are rotated at any other angle, they are
rotated back to 0 degrees in the earlier version. All other objects are rotated back to 0 degrees.

A FrameMaker product writes both BRect and ShapeRect values for backward compatibility. For text
lines, text frames, imported graphics, table cells, and equations that are rotated at an angle of 90, 180, or
270 degrees, the BRect value is the position and size of the object after rotation. For any object rotated at

ADOBE FRAMEMAKER 6.0 |282
MIF Compatibility

any other angle, the BRect value is the position and size of the object before rotation, which is the same as
the ShapeRect value.

Device-independent pathnames

The following codes for pathname components in a device-independent pathname are obsolete and are
ignored by the MIF interpreter.

Code Meaning

A Apollo-dependent pathname

D DOS-dependent pathname

M Macintosh-dependent pathname
u UNIX-dependent pathname

For information about valid codes, see “Device-independent pathnames” on page 13.

Document statements

The following changes have been made to Docunent statements.

MIF 3.00 MIF 4.00

<DCol | at eSepar ati ons bool ean> <DNoPr i nt SepCol or> and <DPri nt ProcessCol or >

In addition, the Docunment statement has a number of new property statements that set options for View
Only documents (see page 104), set options for structured documents, and define custom math operators
(see page 199).

Page statement

The following change has been made to the Page statement.

MIF 3.00 MIF 4.00

<PageOrient ati on keyword> <PageAngl e> and <DPageSi ze>

A page’s size and orientation (landscape or portrait) is determined by the PageAng! e statement and the
Docunent substatement DPageSi ze. A FrameMaker product writes the PageQr i ent at i on statement
for backward compatibility. MIF generators should use the PageAngl e statement instead of PageOr i en-
tation.

When the MIF interpreter reads a Page statement that includes both a PageAngl e and a PageOri en-

t at i on statement, it ignores the PageOr i ent at i on statement. When the interpreter reads a Page
statement that contains a PageQr i ent at i on statement but no PageAngl e statement, it determines the
page’s angle from the PageOr i ent at i on statement. If the page orientation matches the orientation deter-
mined by the DPageSi ze statement, the page’s angle is 0 degrees; otherwise, the page’s angle is 90 degrees.
A page that has neither a PageAngl e nor a PageQri ent at i on statement has an angle of 0 degrees.

283

Facet Formats for Graphics

When you copy a graphic into a FrameMaker document, the FrameMaker document stores the graphic
data in one or more facets. Each facet contains data in a specific graphic format. FrameMaker products use
facets to display and print graphics.

In UNIX versions of FrameMaker products, you can associate a graphic application with a FrameMaker
product through the FrameMaker API or through the FrameServer interface. You can set this up so that
the graphics created and modified in the graphic application can be imported directly into a FrameMaker
document. The graphic application becomes a graphic inset editor. Graphic inset editors write graphic data
to graphic insets, which can be read by FrameMaker products.

For more information on setting up graphic inset editors, see the FDK Programmer’s Guide and the online
manual, Using FrameServer with Applications and Insets. Both manuals are provided with the UNIX version
of the Frame Developer’s Kit.

The first part of this appendix describes the general format for a facet in a MIF file. The second part of this
appendix explains the graphic inset format.

Note: If you are using the API to implement the graphic inset editor, the syntax described in this appendix
applies only to external graphic insets. For information on specifying facet names, data types, and data for
internal graphic insets, see the FDK Programmer’s Guide.

Facets for imported graphics

A graphic imported by copying into a FrameMaker document contains one or more facets. Each facet
describes the imported graphic in a specific graphic format. All imported graphics copied into a document
contain one or more facets used to display and print the file.

FrameMaker products might not use the same facet for displaying and printing a graphic. For example, the
Macintosh version of a FrameMaker product might use a QuickDraw PICT facet for displaying the graphic
and an EPSI facet for printing the graphic.

When printing an imported graphic, FrameMaker products select one of the following facets (in order of
preference):

= EPSI (Encapsulated PostScript)

= Native platform facet (QuickDraw PICT, WMF)
- FrameVector

« TIFF

- Framelmage and other bitmap facets

When displaying an imported graphic, FrameMaker products select one of the following facets (in order
of preference):

ADOBE FRAMEMAKER 6.0 | 284
Facet Formats for Graphics

- Native platform facet (QuickDraw PICT, WMF)
- FrameVector

- Framelmage

- TIFF

= Other bitmap facets

All versions of FrameMaker products recognize EPSI (with DCS Cyan, DCS Magenta, DCS Yellow, and
DCS Black for color separations), TIFF, Framelmage, and FrameVector facets. Macintosh versions of
FrameMaker products also recognize QuickDraw PICT and QuickTime facets. Windows versions of
FrameMaker products also recognize WMF and OLE facets.

If the graphic data does not have a corresponding facet supported by a FrameMaker product for displaying
or printing, the FrameMaker product can use filters to convert the graphic data into one of two internal
facets: Framelmage (for bitmap data) and FrameVector (for vector data). For example, FrameMaker
products do not have a facet for HPGL, so HPGL data is converted into a FrameVector facet.

In Macintosh and Windows versions of FrameMaker products, users can choose to automatically save a
cross-platform facet of an imported graphic. If a cross-platform facet does not already exist, FrameMaker
products generate a Framelmage facet for the imported graphic.

Basic facet format
A facet consists of a facet name, a data type, and a series of lines containing facet data. For example:

=EPSI
&%
&% PS- Adobe-2. 0 EPSF-2.0\n

Facet name
The first line of a facet identifies the facet by name. The facet name line has the following format:

=f acet _nane

The facet name can be one of the standard display and print facets or an application-specific name regis-
tered with the FrameMaker product. (For information about registering your application-specific facets,
see the FDK Platform Guide for your platform, which is included with the Frame Developer’s Kit.)

Data type
The second line provides the data type of the facet: unsigned bytes (&%), integer (&%), or metric (&%4m).

If the facet data is binary (such as Framelmage and FrameVector data) or if it contains ASCII characters
(such as EPSI data, as shown in the preceding example), the facet uses the unsigned bytes data type (&%).

For example, the following line is the second line in a facet that contains data represented as unsigned bytes:

&%

ADOBE FRAMEMAKER 6.0
Facet Formats for Graphics

Facet data

The remaining lines contain the facet data. Each line begins with an ampersand (&).

The end of the data for a facet is marked by the beginning of a new facet. Thus, a line with a new facet name
signals the end of the previous facet data.

The end of the last facet in the graphic inset is marked by the following line:

=EndI nset

Unsigned bytes

If the facet data contains a backslash character, another backslash precedes it as an escape character. For
example, if the data contains the string x\ yz, the facet contains x\\yz.

Within the facet data, nonprintable ASCII characters or non-ASCII bytes (greater than 7f) are repre-
sented in hexadecimal.

Any section of data represented in hexadecimal is preceded and followed by the characters\ x. For example,
the following Framelmage facet contains data represented in hexadecimal, which is enclosed between two
sets of \ x characters:

=Fr anel mage
&Ny

&\ x
&59a66a95
&00000040

&0000FCO0001FC0000
&\ x

=EndlI nset

Integer data

The integer data type stores integer values in a facet. For example, the f nbi t map program stores the
dimensions of the graphic, the x-coordinate of the hot spot, and the y-coordinate of the hot spot as integer
data in a facet:

=Dat a. f acet

&%

&64

&64

&1

&1

285

ADOBE FRAMEMAKER 6.0
Facet Formats for Graphics

Metric data

Metric data describes a graphic in terms of units of measurement. The following table shows the abbrevi-
ations used to denote units within a facet.

Units Abbreviation
Centimeters cm

Ciceros cicero,cc
Didots dd

Inches in,"
Millimeters nmm

Picas pi ca, pi, pc
Points poi nt, pt

Graphic insets (UNIX versions)

A graphic inset contains graphic data that can be written by a graphic application and used by FrameMaker
products to display and print an imported graphic. A graphic inset can also specify a live link, which
associates an imported graphic in a FrameMaker document with the graphic application used to edit the
graphic. A live link can be set up through FrameServer functions or through an FDK client.

When a live link is established between an imported graphic and a graphic application, users can edit the
graphic in a graphic application and directly import the graphic into a FrameMaker document. For more
information on live links, see the FDK Programmer’s Guide, which is provided with the FDK, or the online
manual, Using FrameServer with Applications and Insets, which is provided with the UNIX version of the
FDK.

Toset up a live link between a graphic application and a FrameMaker document, you need to add functions
to your application to write out graphic data as a graphic inset.

A graphic inset consists of an | nport Obj ect statement that contains one or more facets for display and
print. If your application requires additional information not supported by the display and print facet, the
graphic inset also needs one or more application-specific facets to store this additional information.

The two types of graphic insets are internal graphic insets and external graphic inset files. Each type results
in a slightly different type of integration between FrameMaker products and your application. You can
choose the type of graphic inset that your application supports. In most cases, one format is adequate, but
you might want to give users more than one option. Both types require a display and print facet.

External graphic insets

An external graphic inset file remains independent of the FrameMaker document. The FrameMaker
document contains only a pathname for the graphic inset file. Because the graphic inset data is not
contained in the FrameMaker document, users can access the graphic inset data from the FrameMaker
product, from your application, or from another application.

286

ADOBE FRAMEMAKER 6.0
Facet Formats for Graphics

To edit an external graphic inset from a FrameMaker product, users must open the FrameMaker product
document, select the graphic inset, and choose the Graphic Inset command from the Special menu. The
FrameMaker product passes the external graphic inset filename to your application and instructs your
application to edit the graphic inset. When users finish editing a graphic inset, they issue your application’s
command for pasting a graphic inset to the FrameMaker product, and the FrameMaker product immedi-
ately updates the graphic inset file.

If users edit the graphic inset from another application, FrameMaker products display the updated graphic
inset the next time the document is opened. Note that if the graphic inset file is moved or deleted,
FrameMaker products will be unable to display the data and will inform the user that the graphic inset is
missing.

= BF I
-~ —_—
‘ -1-(01' :’ ~ —
Your graphic External graphic inset E—
application file —

FrameMaker product
document

External graphic insets are best suited to situations in which users are documenting projects in progress or
in which the document’s graphics are updated by external sources (for example, by a database).

An external graphic inset file contains a M FFi | e statementand an | nport Cbj ect statement. The
| nport Obj ect statement lists the graphic inset file’s pathname, the name of the inset editor that created
it, and all of its facets.

An external graphic inset file has the following format:

<M FFil e 6.00>
<l mpor t vj ect
<I nport ObEdi t or inset_editor_name>
<l mport OoFi | eDl devi ce_i ndependent _pat hname>
=f acet _nane
&dat a_type
&f acet _data

=f acet _nanme
&dat a_type
&f acet _data

287

ADOBE FRAMEMAKER 6.0
Facet Formats for Graphics

=EndI nset
>

A MF |InportObEditor statenment nanes the main editor for application-specific
facets in the graphic inset file.

AMIF | nport QbFi | eDl statement specifies the device-independent pathname for the graphic inset file.
For more information on device-independent pathnames, see the section “Device-independent
pathnames” on page 13.

Internal graphic insets

An internal graphic inset is entirely contained within the FrameMaker product document file. Once the
link is established, the graphic inset data exists only in the FrameMaker product document.

Users can access the graphic only through the FrameMaker product. To edit an internal graphic inset, users
must open the FrameMaker product document, select the graphic inset, and choose the Graphic Inset
command from the Special menu. The FrameMaker product writes the graphic inset to a temporary file
and instructs your application to edit it.

] B

Your graphic
application

FrameMaker product document with
internal graphic inset

Internal graphic insets are best suited for environments in which portability of the FrameMaker product
document across different types of systems is most important.

When FrameMaker products create temporary files for internal graphic insets, the temporary files have the
following format:
<M FFi l e 6. 00>
<I npor t Obj ect
<l nmpor t CbEdi t or inset_editor_name>
<InportObFile 2.0 internal inset’>
=f acet _nanme
&dat a_type
&f acet _data

=f acet _nane

288

ADOBE FRAMEMAKER 6.0
Facet Formats for Graphics

&dat a_type

&f acet _data

=EndlI nset

>

Because the graphic inset is stored in the FraneMaker product docunent, the file
does not have an | nport OoFi |l eDl statenent.

The 1 nport ObFi | e statement identifies the file as a FrameMaker version 2.0 internal graphic inset file
for compatibility with earlier versions of FrameMaker products. If you do not plan to use the graphic insets

generated by your application with earlier versions of FrameMaker products, you can omit this statement.

Application-specific facets

Application-specific facets can be in any format your application understands, and a graphic inset file can
contain as many application-specific facets as you want.

When selecting application-specific facets for your graphic inset file, you might want to include an
industry-standard facet (for example, EDIF for EDA applications) so that you can use the graphic inset file
to share data with applications other than FrameMaker products.

Application-specific facets can be contained entirely within the graphic inset file (a local facet), or the
graphic inset file can contain a reference to an external data file or database (a remote facet).

Local application-specific facets

A local application-specific facet is contained in the graphic inset file. The formats for external and internal
graphic insets (described in the sections “External graphic insets” on page 286 and “Internal graphic
insets” on page 288) apply to local application-specific facets.

289

ADOBE FRAMEMAKER 6.0 {290
Facet Formats for Graphics

The following illustration shows the relationship between your application, the FrameMaker product
document, and a graphic inset file with a local application-specific facet.

adps
g AN

Display and print facet

i}

Your graphic
application

Remote application-specific facets

Y

(:«@:@
(&g

Application-specific facet

\i

(&)

N
N
i
2

Graphic inset with a local
application-specific facet

m@m|

FrameMaker product
document

A remote application-specific facet contains the pathname or database key for an existing data file or

database. Since application-specific data is normally duplicated in a separate application file, remote facets

ADOBE FRAMEMAKER 6.0
Facet Formats for Graphics

conserve file space. Because the application-specific facet contains only a pathname, remote facets are

easier to implement.

Display and print facet

Your graphic
application

\i

Graphic inset with a remote
application-specific facet

11/ I

Application-specific facet

Al
g L\

Remote application-specific facet data

FrameMaker product
document

Note: Display and print facets must be contained in the graphic inset file. They cannot be remote facets.

To write a remote facet, your graphic application must write an application data file and store its data type
and pathname in the graphic inset file. A remote application-specific facet has the following format:

=f acet _nane

&f acet _type

&ath_for_facet _file

=EndI nset

For example, the following lines describe the remote facet described in the application data file

/ di agr ans/ Bl ockDi agr am

=appl i cation_nane. f acet

&%

&/ di agr ans/ Bl ockDi agr am

=EndI nset

291

ADOBE FRAMEMAKER 6.0 [292
Facet Formats for Graphics

Example of graphic inset file

The following example is the external graphic inset file generated by the f nmbi t map program, which is
shipped with the UNIX version of the FDK.

The graphic inset file is named /t np/ def aul t . fi . The application-specific facet for this graphic inset
(the file generated by the f mbi t map program) is stored in a remote facet in the file /t np/ def aul t.

Note that although the f mbi t map program writes out the | nport OoFi | e statement, this statement is
obsolete and is only used with older versions of FrameMaker products. When defining a function to write
agraphicinsetfile, use the | nport ObFi | eDl statementand specify a device-independent pathname. For
more information on device-independent pathnames, see “Device-independent pathnames” on page 13.
<M FFi |l e 6. 00> # Cenerated by fnbitmap

<I npor t Obj ect

<Inmport oFile /tnp/default.fi>
<I nport ObEdi t or fnbit map>

=Bi t mapFi |l e. f acet
&
& t mp/ def aul t
=Dat a. f acet
&%
&64
&64
&1
&1
=Fr anel mage
&
&\ x
& ...
&\ x
=Endl nset

>

To see more examples of the graphic inset format, you can import a graphic into a FrameMaker document
(import by copying) and save the FrameMaker document as a MIF file.

General rules for reading and writing facets

To write a facet, you need to modify the existing function in your application for writing data. The function
must write the facet name and data type lines and insert an ampersand at the beginning of each line of facet
data. If necessary, convert data lines to the appropriate facet data format. Unsigned bytes should follow the
conventions described in “Unsigned bytes” on page 285, and metric data should follow the conventions
described in “Metric data” on page 286.

ADOBE FRAMEMAKER 6.0 {293
Facet Formats for Graphics

When writing the facet data, your application can use as many lines as necessary. Each line should be short
enough to read with a text editor, in case you need to debug the graphic inset file. There are no counts,
offsets, or facet size limits.

Facet data in hexadecimal must contain valid hexadecimal digits only (0-9, A-F) and cannot contain
backslash (\) characters. When you write a facet containing hexadecimal data, do not write newline
characters (\r or \ n) at the end of the lines.

Graphic insets cannot contain any blank lines within or between facets.

When reading a graphic inset, your application need only scan for facet name lines and then read the
appropriate facets. Since facets begin and end with the =facet _nanme token, your program should read
facet data until it encounters an equal sign in column 1.

If your application encounters the characters\ x when reading facet data, it should process the subsequent
data as hexadecimal until it encounters another \ x. If your facet contains a mix of ASCII characters and
hexadecimal data, it might be simpler for you to represent the ASCII characters as character codes in
hexadecimal. For example, the FrameVector format represents strings (such as bl ack) as character codes
in hexadecimal (such as 62 6c 61 63 6b).

294

EPSI Facet Format

EPSI is an interchange standard developed by Adobe Systems Incorporated. You can obtain a complete
specification of the EPSI format from Adobe Systems Incorporated.

Imported graphics can contain graphic data in EPSI format. This data is called the EPSI facet of the
graphic. FrameMaker products can use this facet to display and print the graphic. For more information
about facets, see “Facet Formats for Graphics” on page 283.

In a MIF file, the EPSI facet is contained in the | npor t Qbj ect statement. For more information about
the statement, see “ImportObject statement” on page 128.

Specification of an EPSI facet
An EPSI facet begins with the following facet name and data type lines:

=EPSI
&%

Each line of EPSI facet data ends with \ n.
When a FrameMaker product imports a graphic inset with an EPSI facet, FrameMaker products use the

EPSI bounding box to determine the graphic inset’s size. If the bounding box does not fit on the page,
FrameMaker products halve its dimensions until it fits.

Example of an EPSI facet

The following rectangle is an imported graphic:

The following MIF statements describe the imported graphic. The graphic data that specifies the rectangle
is an EPSI facet.
<l mpor t vj ect
<BRect 0 0 0.25" 0.25">
<Pen 15> <Fill 15>
<InportObFile 2.0 internal inset'>
=EPSI
&y
&% PS- Adobe-2. 0 EPSF-2.0\n

ADOBE FRAMEMAKER 6.0 [295
EPSI Facet Format

&YeBoundi ngBox: 0 0 18 18\n
&%WBAPages: 0\n

&WCreator: contr2\n

&R eati onDate: Tue Apr 25 16:09:56 1989\ n
&WEndComment s\ n

&9RMBegi nPreview. 18 18 1 18\n
&Y-FFFCO\ n

&YFFFFCO\ n

&Y-FFFCO\ n

&YFFFFCO\ n

&Y-FFFCO\ n

&YFFFFCO\ n

&YFFFFCO\ n

&Y-FFFCO\ n

&YFFFFCO\ n

&Y-FFFCO\ n

&YFFFFCO\ n

&Y-FFFCO\ n

&Y-FFFCO\ n

&YFFFFCO\ n

&Y-FFFCO\ n

&YFFFFCO\ n

&Y-FFFCO\ n

&YFFFFCO\ n

&WENdPr evi ewh n

&YRENndPr ol og\ n

&%8Page: "one" 1\n

&0 0 noveto 18 O rlineto O 18 rlineto -18 O rlineto closepath O setgray\n
& ill\n

&%BArail er\ n

=Endl nset

> # End | nport Qbj ect

296

Framelmage Facet Format

Framelmage is a format for bitmap graphics that is recognized by FrameMaker products on all platforms.
The specification of the Framelmage format is documented in this appendix.

Imported graphics can contain graphic data in Framelmage format. This data is called the Framelmage
facet of the graphic. FrameMaker products can use this facet to display and print the graphic. For more
information about facets, see “Facet Formats for Graphics” on page 283.

In a MIF file, the Framelmage facet is contained in the | npor t Obj ect statement. For more information
about the statement, see “ImportObject statement” on page 128.

Specification of a Framelmage facet

A Framelmage facet begins with the following facet name and data type lines:

=Fr anel mage

&Ny

When importing a graphic with a Framelmage display and print facet, FrameMaker products prompt the

user to specify the graphic inset’s print resolution in the Imported Graphic Scaling dialog box. The print
resolution determines the size of the imported graphic.

Specification of Framelmage data

A description of a graphic in Framelmage format consists of three parts:

= A header, which describes the dimensions and other characteristics of the graphic
= An optional color map, included only if the graphic uses colors
- Data describing the bitmap of the imported graphic

The description is written as integer values in hexadecimal format. Each line is preceded by an ampersand
(&). The data section begins with the % characters, which indicate that the Framelmage data is represented
as unsigned bytes. The beginning and end of the data are bracketed by the symbol\ x, which indicates that
the data is in hexadecimal format.

Header

The header describes properties of the imported graphic. These properties are described by eight 32-bit
integer values, such as the values shown in the following example:

&59a66a95

&00000040

&00000040

&00000001

ADOBE FRAMEMAKER 6.0 (297
Framelmage Facet Format

&00000000
&00000001
&00000000
&00000000
Each value identifies a property of the imported graphic:

= The first value is always the constant value 0x59a66a95.

= The second value is the width of the graphic in pixels. In the preceding example, the graphic is 64 pixels
wide (converting the hexadecimal value 0x00000040 to the decimal value 64).

= The third value is the height of the graphic in pixels. In the example, the graphic is 64 pixels high
(converting the hexadecimal value 0x00000040 to the decimal value 64).

- The fourth value is the number of bits used to describe a single pixel. This value is sometimes referred
to as the depth of the graphic. For black and white graphics, only one bit is used to describe a single pixel.
For color images, eight bits are used to describe a single pixel. In the example, the value 0x00000001
indicates that the graphic is in black and white.

- The fifth value is not currently used and is set to 0x00000000 by default.

= The sixth value specifies whether or not the data is encoded. If the data is encoded, this value is set to
0x00000002. If the data is not encoded (that is, if the data is in uncompressed format), this value is set
to 0x00000001. In the example, the data is uncompressed.

= The seventh value identifies the type of color map used by the graphic. If the graphic is in black and
white, no color map is used, and this value is set to 0x00000000. If the graphic is in color, an RGB color
map is used, and this value is set to 0x00000001 or 0x00000002. In the example, because the graphic is
in black and white, the value is set to 0x00000000.

= The eighth value is the length of the color map in bytes. If the graphic is in black and white, no color map
is used, and this value is set to 0x00000000. If the graphic is in color, a color map with 256 colors is used
(described by 768 bytes of information), and this value is set to 0x00000300 (the hexadecimal represen-
tation of the number 768). In the example, because the graphic is in black and white, the value
0x00000000 is used.

The Framelmage format is similar to the Sun rasterfile format for bitmap images. The following section of
codeis partofthe /usr/incl ude/rasterfile.h headerfile, which describes the Sun rasterfile format:

struct rasterfile {

IntT ras_nmagic; /* magi c nunber */

IntT ras_width; /* width (pixels) of imge */

IntT ras_height; /* height (pixels) of inmage */

IntT ras_depth; /* depth (1, 8, or 24 bits) of pixel */
IntT ras_length; /* length (bytes) of image */

IntT ras_type; /* type of file; see RT_* bel ow */

IntT ras_maptype; /* type of colormap; see RMI_* bel ow */
IntT ras_mapl ength; /* length (bytes) of follow ng map */

/* color map follows for ras_maplength bytes, followed by image */

ADOBE FRAMEMAKER 6.0 (298
Framelmage Facet Format

b
#defi ne RAS_MAG C 0x59a66a95

/* Sun supported ras_type's */

#define RT_STANDARD 1 /* Raw i mage in 68000 byte order */
#defi ne RT_BYTE _ENCODED 2 /* Run-1length conpression of bytes */

/* Sun registered ras_maptype's */

#defi ne RMI_RAW 2

/* Sun supported ras_maptype's */

#define RMI_NONE O /* ras_maplength is expected to be 0 */
#define RMI_EQUAL_RGB 1 /* red[ras_mnapl ength/ 3], green[], blue[] */

For more information, see the / usr/incl ude/ rasterfile.h header file and the Sun man page on
rasterfile.

Color map

The optional color map defines colors used for the imported graphic. It consists of 256 bytes of red,
followed by 256 bytes of green, followed by 256 bytes of blue. Each byte contains an intensity value for a
color. FF is the maximum intensity and 00 is the minimum (none).

Color 05 = bright red = FF red + 00 green + 00 blue \@

array of 256 red levels
‘00 ‘OC ‘AZ ‘OF lFF \CS ‘FG ‘D? (256 bytes)

Red level = FF |
array of 256 green level:
‘ 0A ‘ Al ‘ B3 ‘ 03 ‘ 00 ‘ ocC ‘ E6 ‘ F7 (256 bytes)

Green level = 00 |
1 array of 256 blue levels
‘ FF ‘ EE ‘ AA ‘ 11 }\00 DD ‘ 66 ‘ 77 (256 bytes)

Blue level = 00 W

The color map defines 256 colors. Each color contains a red, green, and blue level of intensity. The values
of the first red byte, first green byte, and first blue byte define the first color in the map; the values of the
second red, green, and blue bytes define the second color, and so forth.

For example, the data value 05 represents the color defined by the level of red stored in the fifth byte of red,
the level of green stored in the fifth byte of green, and the level of blue stored in the fifth byte of blue. If the
fifth byte of red contains FF (the maximum red intensity) and the fifth bytes of green and blue are both 00,
then 05 would represent bright red.

ADOBE FRAMEMAKER 6.0 (299
Framelmage Facet Format

Data describing the graphic
The data type can be either byte encoded or standard. Each type uses different data formats.

Byte-encoded data

If ras_type is RT_BYTE_ENCODED (if the sixth value in the header is 0x00000002), the data is a run-
length encoded pixel matrix. The byte value 80 hexadecimal (decimal 128) is used as a separator for
encoding several bytes of the same color. The encoding scheme uses the following format:

80 nn pp

where nn+1 is the number of times to repeat the data byte (pp).

For example, the following values represent seven data bytes of the hex value 55:
80 06 55

A single pixel value of 80 must be encoded as 80 00 in the data. If the value 80 occurs sequentially, use the
format:

80 nn 80

where nn+1 is the number of times 80 occurs.

Standard data

If ras_type is RT_STANDARD (if the sixth value in the header is 0x00000001), the data contains
uncompressed hex data corresponding to the graphic. Each byte is eight pixels for a monochrome graphic
or one pixel for color. Each scanline of data must be padded to a word (16 bit) boundary.

Differences between monochrome and color

There are two types of Framelmage files: monochrome and pseudocolor.

Monochrome images

A monochrome graphic has the following header properties:

Property Value
ras_depth 1
ras_naptype RMTI_NONE
ras_mapl ength 0

An example of the header for a monochrome graphic is shown below:

&59a66a95
&00000040
&00000040
&00000001

ADOBE FRAMEMAKER 6.0 300
Framelmage Facet Format

&00000000
&00000001
&00000000
&00000000

A monochrome graphic has no color map. Each data byte represents eight pixels, and the most significant
bit is the leftmost pixel.

Graphic data bytes are hex values that represent bit patterns of black and white. For example, hex 55 repre-
sents binary 01010101, which produces a gray shade; hex FF represents binary 11111111, which produces
black; and hex 00 represents binary 00000000, which produces white.

Pseudocolor and gray images

A pseudocolor or gray graphic has the following header properties:

Property Value

ras_depth 8

ras_maptype RMI_EQUAL_RGB or RMI_RAW
ras_nmapl engt h 300

An example of the header for a color graphic is shown below:

&59a66a95
&00000040
&00000040
&00000008
&00000000
&00000001
&00000002
&00000300

Each graphic data byte represents one pixel of a particular color. The value of a data byte is an index to a
color stored in the color map. (See “Color map” on page 298.)

ADOBE FRAMEMAKER 6.0 |301
Framelmage Facet Format

Sample unencoded Framelmage facet

The sample Framelmage facet in this section describes the following illustration. Note that no color map
is included in the description, because the graphic is in black and white.

Header ——

=Franel mage

&

&\ x

&59a66a95
&00000040
&00000010
&00000001
&00000000
&00000001
&00000000
&00000000
&FFFFFFFFFFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&FFFFFFFF00000001
&FFFFFFFFO00000001
&FFFFFFFF00000001
&FFFFFFFFO0000001
&FFFFFFFFO0000001
&FFFFFFFF00000001
&FFFFFFFFO0000001
&FFFFFFFFFFFFFFFF

Graphic data —

ADOBE FRAMEMAKER 6.0 |302
Framelmage Facet Format

Sample encoded Framelmage facet

The sample Framelmage facet in this section describes the same illustration. Note that no color map is
included in the description, because the graphic is in black and white. Unlike the previous file, this graphic
file is in encoded format.

Header ——

=Fr anel mage
&%

&\ x
&59A66A95
&00000040
&00000010
&00000001
&00000000
&00000002
&00000000
&00000000
&8007FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000

Graphic data —

Graphic data

ADOBE FRAMEMAKER 6.0
Framelmage Facet Format

&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8007FF
&\ x

303

304

FrameVector Facet Format

FrameVector is a format for vector graphics that is recognized by FrameMaker products on all platforms.
The specification of the FrameVector format is documented in this appendix.

Imported graphics can contain graphic data in FrameVector format. This data is called the FrameVector
facet of the graphic. FrameMaker products can use this facet to display and print the graphic. For more
information about facets, see “Facet Formats for Graphics” on page 283.

In a MIF file, the FrameVector facet is contained in the | npor t Obj ect statement. For more information
about the statement, see “ImportObject statement” on page 128.

Specification of a FrameVector facet
A FrameVector facet begins with the following facet name, facet data type, and version number lines:

=Fr aneVect or
&%
&<Maker Vect or XXX>

In the version nunmber line, XXX is a three-character string identifying the
version of the FrameMaker product. For exanple, the character string
<Maker Vector5.0> identifies an inported graphic created in FraneMaker 5.0.

If the imported graphic is stored in a separate file, the file must include the header string <Maker Vec-
t or Xxx>.

Specification of FrameVector data

A description of a graphic in FrameVector format consists of records. Each record contains the following
fields:

= A unique one-byte op code
- A four-byte integer specifying the size of the data
« The actual data

The following figure illustrates the breakdown of a typical record:

One-byte op code Four-byte field describing the size of Actual data of variable length
the data (9 bytes long in this case, as
| specified by the previous field)
T

| 87 00000009 017A0000002D000000 _J

Types and listing of op codes
Each record begins with an op code. The op code can be one of the following three types:

ADOBE FRAMEMAKER 6.0 |305
FrameVector Facet Format

« Definition

= The definition op codes specify the version of the FrameVector graphic and any global information used
inthe graphic, such as colors. Any definitions used by the style and object op codes must be specified before
these op codes.

- Style

= The style op codes define the styles applied to all operations until the styles are changed. For example,
all graphics objects use the same line width, fill pattern, and color until the style op codes change. All styles
need to be defined before specifying the first object op code.

= Object
= The object op codes define graphics objects.

The following tables list the op codes, with a brief description of each op code and the number of the page
where each op code is described. The definitions of many of these op codes are similar to corresponding
MIF statements.

Definition op codes

Op code Description of op code Location

0x01 Version number page 307
0x02 Bounding rectangle page 308
0x03 CMYK color definition page 308
0x04 RGB color definition page 309
0x05 Pantone color definition page 309
OxFF End of the vector graphics page 309

Note that the colors defined in a FrameVector graphic can be used only within the FrameVector graphic.
These colors cannot be used for other purposes in the document.

If the definition of a color in the FrameVector graphic does not match the definition in the color catalog of
the document, FrameMaker products use the definition in the color catalog when displaying the graphic.

Style op codes

Op code Description of op code Location

0x06 Dashed line style page 310
0x07 Arrow style page 310
0x20 Rotation angle page 311
0x21 Pen pattern page 311
0x22 Fill pattern page 311

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Op code Description of op code Location
0x23 Line width page 312
0x24 Color page 312
0x25 Overprint page 312
0x26 Dashed/solid line page 312
0x27 Head cap style page 313
0x28 Tail cap style page 313
0x29 Smoothed page 313
Ox2A Font name page 314
0x2B Font size page 314
0x2C Font style page 314
0x2D Font color page 315
Ox2E Font weight page 315
Ox2F Font angle page 315
0x30 Font variation page 316
0x31 Font horizontal kerning page 316
0x32 Font vertical kerning page 316
0x33 Font word spread value page 317
Object op codes

Op code Description of op code Location
0x80 Ellipse page 317
0x81 Polygon page 317
0x82 Polyline page 318
0x83 Rectangle page 318
0x84 Rounded rectangle page 319
0x85 Arc page 319
0x86 Framelmage graphic imported within this graphic page 320
0x87 Beginning of text line page 321
0x88 Text in text line page 322
0x89 End of text line page 322

306

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Op code Description of op code Location

Ox8A Beginning of clipping rectangle page 322
0x8B End of clipping rectangle page 322
0x8C FrameVector graphic imported within this graphic page 323

Data types used in specifications
The following table lists the data types used for the specifications in this appendix.

Type Definition

byte unsigned 8-bit integer
short unsigned 16-bit integer
long signed 32-bit integer

unsigned long unsigned 32-bit integer

metric signed 32-bit, fixed point; the first 16 bits represent the digits preceding the decimal, the
last 16 bits represent the digits following the decimal

string string of characters beginning and ending with a null character; the string is preceded by
a short integer that specifies the length of the string (including the null characters that
bracket the string)

point 2 metrics interpreted as the position of the point in x and y coordinates

rectangle 4 metrics interpreted as the position of the rectangle in x and y coordinates and the size of
the rectangle in width and height

All integer values are stored in big endian order.

The x and y coordinates are relative to the rectangle bounding the vector graphics. The origin of the
coordinate system is the upper left corner of this rectangle.

For the specifications of angles, positive values are measured clockwise from 0~ (the x-axis), and negative
values are measured counterclockwise.

Specifications of definition op codes

This section describes each definition op code. Op codes are listed by number and description. The op code
number is shown in parentheses.

Version number (0x01)

Specification by data type: Byte

Description of data: Bits 7-4: major version number

Bits 3-0: minor version number

307

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Size of data in bytes:

1

Example: 01 00000001 50
representing version 5.0
Note: This must be the first op code for a FrameVector graphic.

Bounding rectangle (0x02)

Specification by data type:

Metric, metric, metric, metric

Description of data:

Position of graphic (metric, metric)

Width of graphic (metric)

Height of graphic (metric)

Size of data in bytes:

16

Example:

02 00000010 00000000 00000000 020A0000 0OBDO0OOO
for a graphic with the following specifications:

X position = 0 points (0000)

y position = 0 points (0000)

width = 522 points (020A)

height = 189 points (00BD)

Note:

This must be the second op code for a FrameVector graphic.

CMYK color definition (0x03)

Specification by data type:

String, metric, metric, metric, metric

Description of data:

Name of color tag (string)

Percentages of cyan, magenta, yellow, and black (metric, metric, metric, met-
ric)

Size of data in bytes:

Variable

Example:

03 0000001B 00 0B 53 61 67 6520 47 72 65 65 6E 00 00500000 00230000
00320000 00000000

for a color named Sage Green with the following specifications:
cyan = 80% (0050)

magenta = 35% (0023)

yellow = 50% (0032)

black = 0% (0000)

308

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Note:

See “Definition op codes” on page 305 for more information on color defi-
nitions.

RGB color definition (0x04)

Specification by data type:

String, metric, metric, metric

Description of data:

Name of color tag (string)

Percentages of red, green, and blue (metric, metric, metric)

Size of data in bytes:

Variable

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00 00280000 00410000
00330000

for a color named Sage Green with the following specifications:
red = 40% (0028)

green = 65% (0041)

blue = 51% (0033)

Note:

See “Definition op codes” on page 305 for more information on color defi-
nitions.

PANTONE color definition (0x05)

Specification by data type:

String, string

Description of data:

Name of color tag (string)

PANTONE name or number (string)

Size of data in bytes:

Variable

Example: 05 0000001A 00 0B 53 61 67 65 20 47 72 65 65 6E 00 00 04 35 37 30 00
for a color named Sage Green with the PANTONE number 570
Note: See “Definition op codes” on page 305 for more information on color defini-

tions.

End of the vector graphic (OxFF)

Specification by data type: N/A

Description of data: None

Size of data in bytes: 0

Example: FF 00000000

Note: This must be the last op code for a FrameVector graphic.

309

Specifications of style op codes

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

This section describes each style op code. Op codes are listed by number and description. The op code
number is shown in parentheses.

Note that these styles remain in place until another style op code resets the style.

Dashed line style (0x06)

Specification by data type:

Short, metric, ... , metric

Description of data:

Number of dash segments (short)

Length of dash segments in points (metric, ..., metric)

Size of data in bytes:

Variable

Default value:

None (solid)

Example:

06 0000000A 0002 00080000 00060000

for a dashed line with the following specifications:
number of dash segments = 2

dash segment #1 (line segment) = 8.0 points long

dash segment #2 (gap in dashed line) = 6.0 points long

Arrow style (0x07)

Specification by data type:

Byte, byte, byte, byte, metric, metric

Description of data:

Tip angle in degrees (byte — between 5 and 85 degrees)

Base angle in degrees (byte — between 10 and 175 degrees)

Arrow type (byte — 0:stick, 1:hollow, 2:filled)

Scale the arrow? (byte — 0:no, 1:yes)

Length in points (metric)

Scale factor (metric)

Size of data in bytes:

12

Default value:

default arrow style

310

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Example:

07 0000000C 10 5A 02 00 000C0000 00004000
for an arrow style with the following specifications:
tip angle = 16° (10)

base angle = 90° (5A)

arrow type = filled (02)

arrow scaled? = no (00)

length = 12 points (000C0000)

scale factor = 0.25 (00004000)

Rotation angle (0x20)

Specification by data type:

Metric

Description of data:

Angle in degrees

Size of data in bytes:

4

Default value:

0

Example:

20 00000004 00500000

for the rotation angle of 80°

Pen pattern (0x21)

Specification by data type:

Byte

Description of data:

Index to pen patterns (see “Values for Pen and Fill statements” on page 121)

Size of data in bytes:

1

Default value:

0 (solid)

Example:

21 00000001 00

for a solid pen pattern

Fill pattern (0x22)

Specification by data type:

Byte

Description of data:

Index to pen patterns (see “Values for Pen and Fill statements™ on page 121)

Size of data in bytes:

1

Default value:

7 (white)

Example:

22 00000001 07

for a white fill pattern

311

Line width (0x23)

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Specification by data type:

Metric

Description of data:

Width of line in points

Size of data in bytes:

4

Default value:

1 point

Example:

23 00000004 00008000

for the line width of 0.5 point

Color (0x24)

Specification by data type:

String

Description of data:

Name of color tag

Size of data in bytes:

Variable

Default value:

Black

Example:

24 00000006 00 06 42 6C 61 63 6B 00

for the color Black

Overprint (0x25)

Specification by data type:

Byte

Description of data:

Is the object overprinted? (0: no, 1:yes)

Size of data in bytes:

1

Default value:

0 (no)

Example:

25 00000001 00
if not overprinted
25 00000001 01

if overprinted

Dashed/solid line (0x26)

Specification by data type:

Byte

Description of data:

Is the line dashed? (0: no, 1:yes)

Size of data in bytes:

1

Default value:

0 (no)

312

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Examples: 26 00000001 00
for a solid line
26 00000001 01
for a dashed line
Note: The style of the dashed line is specified by op code 0x06.

Head cap style (0x27)

Specification by data type:

Byte

Description of data:

Style of head cap or line end (0:arrow, 1:butt, 2:round, 3:square)

Size of data in bytes:

1

Default value:

3 (square)

Example:

27 00000001 00

for arrow style

Tail cap style (0x28)

Specification by data type:

Byte

Description of data:

Style of tail cap or line end (O:arrow, 1:butt, 2:round, 3:square)

Size of data in bytes:

1

Default value:

3 (square)

Example:

28 00000001 00

for arrow style

Smoothed (0x29)

Specification by data type:

Byte

Description of data:

Is the object smoothed? (0: no, 1:yes)

Size of data in bytes:

1

Default value:

0 (no)

Example:

29 00000001 00
for an unsmoothed object
29 00000001 01

for a smoothed object

313

Font name (0x2A)

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Specification by data type:

Byte, string, string, string (some strings not used, depending on flag)

Description of data:

Flag indicating which names are used to identify the font (byte — O:family
name, 1:family and PostScript name, 2:family and platform name, 3:all three
names)

Family name (string)

PostScript name (string)

Platform name (string)

Size of data in bytes:

Variable

Default value:

default font name

Example:

2A 0000000A 00 00 08 43 6F 75 72 69 65 72 00

for a font specified by the family name Courier

Font size (0x2B)

Specification by data type:

Metric

Description of data:

Point size of font

Size of data in bytes:

4

Default value:

default font size

Example:

2B 00000004 000C0000

for a 12 point font

Font style (0x2C)

Specification by data type:

Unsigned long

Description of data:

Described by 14 bits, where bit 0 is the least significant bit:

Bit O: bold (equivalent to setting the font weight to bold)

Bit 1: italic (equivalent to setting the font angle to italic)

Bits 2-4: underline style — 0:no underline, 1:single, 2:double, 3:numeric (bit
4 is not currently used)

Bit 5: overline

Bit 6: strikethrough

Bit 7: superscript

Bit 8: subscript

314

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Bit 9: outline

Bit 10: shadow

Bit 11: pair kern

Bits 12-13: case — 0:as is, 1:small caps, 2:lower case, 3:upper case

Size of data in bytes:

4

Default value:

default font style

Example:

2C 00000004 00000043

for a font with bold, italic, and strikethrough styles

Font color (0x2D)

Specification by data type:

String

Description of data:

Name of color tag

Size of data in bytes:

Variable

Default value:

Black

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00

for a font in the color Sage Green

Font weight (Ox2E)

Specification by data type:

String

Description of data:

Name of font weight type (uses the same values as the MIF F\Wei ght state-
ment)

Size of data in bytes:

Variable

Default value:

default font weight

Example:

2E 00000008 00 08 52 65 67 75 6C 61 72 00

for the font weight Regular

Font angle (0x2F)

Specification by data type:

String

Description of data:

Name of font angle type (uses the same values as the MIF FAngl e statement)

Size of data in bytes:

Variable

Default value:

default font angle

315

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Example:

2F 00000008 00 08 52 65 67 75 6C 61 72 00

for the font angle Regular

Font variation (0x30)

Specification by data type:

String

Description of data:

Name of font variation type (uses the same values as the MIF FVar statement)

Size of data in bytes:

Variable

Default value:

default font variation

Example:

30 00000008 00 08 52 65 67 75 6C 61 72 00

for the font variation Regular

Font horizontal kerning (0x31)

Specification by data type:

Metric

Description of data:

Horizontal kerning in percentage on an em (a positive value moves characters
to the right, a negative value moves characters to the left)

Size of data in bytes:

4

Default value:

default horizontal kerning

Example:

31 00000004 00008000
for a font kerning of 50% of an em to the right (0.50)
31 00000004 FFFF8000

for a font kerning of 50% of an em to the left (-0.50)

Font vertical kerning (0x32)

Specification by data type:

Metric

Description of data:

Vertical kerning in percentage of an em (a positive value moves characters
downward, a negative value moves characters upward)

Size of data in bytes:

4

Default value:

default vertical kerning

Example:

32 00000004 00008000
for a font kerning of 50% of an em downward (0.50)
32 00000004 FFFF8000

for a font kerning of 50% of an em upward (-0.50)

316

Font word spread value (0x33)

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Specification by data type:

Metric

Description of data:

Percentage of spread

Size of data in bytes:

4

Default value:

default word spread

Example:

33 00000004 00008000

for a word spread of 50% (0.50)
33 00000004 FFFF8000

for a word spread of -50% (-0.50)

Specifications of object op codes

This section describes each object op code. Op codes are listed by number and description. The op code
number is shown in parentheses.

Ellipse (0x80)

Specification by data type:

Rectangle

Description of data:

Position and size of ellipse in points

Size of data in bytes:

16

Example:

80 00000010 01320000 00240000 007EO000 O07EOOC00
for an ellipse with the following specifications:

X position = 306 points (0132)

y position = 36 points (0024)

width = 126 points (007E)

height = 126 points (007E)

Polygon (0x81)

Specification by data type:

Long, point, ..., point

Description of data:

Number of points (long)

Position of each point in points (point, ..., point)

Size of data in bytes:

Variable

317

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Example:

81 00000010 00000003 01320000 002E0000 01100000 007EO000
01680000 007D0000

for a polygon with the following specifications:
number of points = 3

X position of point #1 = 306 points (0132)

y position of point #1 = 46 points (002E)

X position of point #2 = 272 points (0110)

y position of point #2 = 126 points (007E)

x position of point #3 = 360 points (0168)

y position of point #3 = 125 points (007D)

Note:

When smoothed style is on, this object is a closed Bezier curve.

Polyline (0x82)

Specification by data type:

Long, point, ..., point

Description of data:

Number of points (long)

Position of each point in points (point, ..., point)

Size of data in bytes:

Variable

Example:

82 0000000C 00000002 00120000 00360000 OOFCO000 003FO000
for a polyline with the following specifications:

number of points = 2 (00000002)

point #1, x position = 18 points (0012)

point #1, y position = 54 points (0036)

point #2, x position = 252 points (OOFC)

point #2, y position = 63 points (003F)

Note:

When smoothed style is on, this object becomes a Bezier curve.

Rectangle (0x83)

Specification by data type:

Rectangle

Description of data:

Position and size of rectangle in points

Size of data in bytes:

166

318

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Example:

83 00000010 00670000 004FO000 00130000 003CO000
for a rectangle with the following specifications:

x position = 103 points (0067)

y position = 79 points (004F)

width = 19 points (0013)

height = 60 points (003C)

Rounded rectangle (0x84)

Specification by data type:

Metric, rectangle

Description of data:

Radius of corners in points (metric)

Position and size of rectangle in points (rectangle)

Size of data in bytes:

20

Example:

84 00000014 00120000 007E0000 007EOO00 00630000 00240000
for a rounded rectangle with the following specifications:

radius of corners = 18 points (0012)

X position = 126 points (007E)

y position = 126 points (007E)

width = 99 points (0063)

height = 36 points (0024)

Arc (0x85)

Specification by data type:

Rectangle, metric, metric

Description of data:

Position and size of arc in points (rectangle)

Start angle in degrees (metric)

Length of arc in degrees, where positive values correspond to clockwise arcs
and negative values correspond to counterclockwise arcs (metric)

Size of data in bytes:

24

319

ADOBE FRAMEMAKER 6.0 |320
FrameVector Facet Format

Example: 85 00000018 00490000 00270000 007C0O0O00 008CO0O00 00000000
005A0000

for an arc with the following specifications:
X position = 73 points (0049)

y position = 39 points (0027)

width = 124 points (007C)

height = 140 points (008C)

start angle = 0°

arc angle length = 90°

Framelmage graphic imported within this graphic (0x86)

Specification by data type: Rectangle, byte, bitmap

Description of data: Position and size of the bounding rectangle in points (rectangle)

Is the object flipped left/right? (byte — 0:no, 1:yes)

Framelmage data (bitmap)

Size of data in bytes: Variable

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Example:

86 00000035 00F20000 00740000 00080000 00080000 00
59A66A95
00000008
00000008
00000001
00000000
00000002
00000000
00000000
80 OE FF
20

for an imported bitmap graphic of a black square with the following specifi-
cations:

X position = 242 points
y position = 116 points
width = 8 points
height = 8 points

flipped left/right = no

Note:

The bitmap is scaled to the size of the bounding rectangle.

Beginning of text line (0x87)

Specification by data type:

Point, byte

Description of data:

Baseline origin of the text line in points (point)

Text line alignment (byte — O:left, 1:center, 2:right)

Size of data in bytes:

9

Example:

87 00000009 017A0000 002D0000 00

for a text line with the following specifications:
X position = 378 points (017A)

y position = 45 points (002D)

alignment = left

Note:

The specification of the start of a text line begins with op code 87 and can

contain combinations of fonts and text. A text line must end with op code 89.

321

Text in text line (0x88)

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Specification by data type:

String

Description of data:

Actual text written in text line

Size of data in bytes:

Variable

Example:

88 00000005 0005 74 65 78 74 00

for the text line “text”

End of text line (0x89)

Specification by data type: N/A
Description of data: None

Size of data in bytes: 0

Example: 89 00000000

Beginning of clipping rectangle (0x8A)

Specification by data type:

Rectangle

Description of data:

Position and size of clipping rectangle in points

Size of data in bytes:

16

Example:

8A 00000010 00670000 004FO000 00130000 003C0O000
for a clipping rectangle with the following specifications:
X position = 103 points (0067)

y position = 79 points (004F)

width = 19 points (0013)

height = 60 points (003C)

Note:

Clipping rectangles are unique to the FrameVector format. All objects within
a clipping rectangle are drawn to the boundaries of the rectangle. If an object
extends beyond this region, the portion that passes the rectangle boundary is

not drawn.

The specification of the start of a clipping rectangle begins with op code 8A
and ends with op code 8B. All objects within the clipping rectangle must be

specified between these two op codes.

End of clipping rectangle (0x8B)

Specification by data type:

N/A

Description of data:

None

322

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

Size of data in bytes: 0

Example: 8B 00000000

FrameVector graphic imported within this graphic (0x8C)

Specification by data type: Rectangle, byte, vector data

Description of data: Position and size of the bounding rectangle in points (rectangle)

Is the object flipped left/right? (byte — 0:no, 1:yes)

FrameVector data (vector data)

Size of data in bytes: Variable

Example: 8C 00000046 00670000 004FO000 00130000 003C0O000 00
...(FrameVector data)...
for a FrameVector graphic with the following specifications:
X position = 103 points (0067)
y position = 79 points (004F)
width = 19 points (0013)
height = 60 points (003C)

flipped left/right = no

Note: The vector graphic is scaled to the size of the bounding rectangle.

Sample FrameVector facet

The sample FrameVector facet in this section describes the following illustration:

FRAMEVECTOR GRAPHIC

This illustration is composed of the following graphic objects:

= A rectangle with no border and a gray fill

= A polygon defined by three points, a black border, and no fill
= A rectangle with a black border and a white fill

« A text line with the text “FrameVector Graphic” in small caps
= A polyline defined by two points and an arrow style head

- An arc with a black border and no fill

323

The following sample facet describes this graphic.

=Fr ameVect or

&%

&<Maker Vect or 5. 0>

&\ x

&010000000150
&020000001000000000000000000168000000D80000
&230000000400008000

&21000000010F

&24000000080006426C61636B00

&260000000100

&220000000104

&200000000400000000
&8300000010007A00000052000000C0000000190000
&210000000100

&220000000107

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

&810000001C00000003000E0000004100000029000000710000004C000000410000

&830000001000720000004A000000€C0000000190000
&8700000009007B0000005C000000
&2A0000000C0O0000A\ xHel vet i ca\ x00
&2B0000000400090000

&300000000A0008526567756C617200
&2F0000000A0008526567756C617200
&2E0000000A0008526567756C617200

&330000000400008000

&2C0000000400001000

&88000000160014\ xFr aneVect or G aphi c\ x00
&8900000000

&070000000C10780201000C00000004000

&270000000100
&82000000140000000200720000005500000033000000550000
&22000000010F

&270000000103
&850000001800040000002B0000002F0000002C0000005A0000005A0000
&FF00000000

&\ x

=EndlI nset

324

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

The following sections explain the syntax used to describe this facet.

Definition op codes for the FrameVector graphic
The example begins with the ASCII string <Maker Vect or 5. 0>. The\ x characters indicate that the data
that follows is in hexadecimal format.

The following lines specify the FrameVector version (5.0) and the size (5" x 3", or 360 points by 216 points)
and position (0,0) of the FrameVector graphic:

&010000000150
&020000001000000000000000000168000000D80000
Since colors are not used in this example, the color op codes are not specified.

Specification of the rectangle shadow

The drop shadow of the rectangle is drawn first, since it appears behind the other graphic objects. The
rectangle has the following specifications:

= The line width is 0.5 point.

&230000000400008000

= The pen pattern is none (OF).

&21000000010F

« The color is black.
&24000000080006426C61636B00

= The line is solid (not dashed).

&260000000100

= The fill pattern is grey (04).

&220000000104

= The rotation angle is 0°.

&200000000400000000

= The position of the rectangle is (122 points, 82 points).
&8300000010007A000000520000

= The size of the rectangle is 192 points by 25 points.
00C0000000190000

Specification of the polygon

The polygon in this example has the following specifications:
= The pen pattern is solid (00).

&210000000100

- The fill pattern is white (07).

8220000000107

325

= The polygon has three points.
&810000001C00000003

ADOBE FRAMEMAKER 6.0
FrameVector Facet Format

= The positions of the three points are (15 points, 65 points), (41 points, 113 points), and (76 points, 65

points).
000EO000004100000029000000710000004C000000410000
The rest of the styles are inherited from the previous object.

Specification of the rectangle
The white rectangle in this example has the following specifications:

= The position of the rectangle is (114 points, 74pt).
&830000001000720000004A0000

= The size of the rectangle is 192 points by 25 points.
00C0000000190000

The rest of the styles are inherited from previous objects.

Specification of the text line
The text line in this example has the following specifications:

= The position of the text line is (123 points, 92 points), and the text line is left-aligned.

&8700000009007B0000005C000000

= The text line uses the Helvetica font.
&2A0000000C00000A\ xHel vet i ca\ x00

= The text line uses a 9-point font.
&2B0000000400090000

- The font variation is Regular.
&300000000A0008526567756C617200

= The font angle is Regular.
&2F0000000A0008526567756C617200

= The font weight is Regular.
&2E0000000A0008526567756C617200

« The font word spread value is 50%.
&330000000400008000

= The font style is Small Caps.
&2C0000000400001000

= The text in the text line is "FrameVector Graphic."
&88000000160014\ xFr ameVect or G aphi c\ x00
The rest of the styles are inherited from previous objects.

326

ADOBE FRAMEMAKER 6.0 (327
FrameVector Facet Format

The following record specifies the end of the text line:

&8900000000

Specification of the polyline
The polyline in this example has the following specifications:

= The arrow style has a tip angle of 16° and a base angle of 120°.
&070000000C1078

= The arrow style is defined so that the arrow is filled and is scaled as it gets wider. The length of the arrow
is 12 points. If the line is widened, the arrow head also is widened by a corresponding factor of 0.25.

0201000C00000004000

= The style of the head cap of the polyline is arrow.

&270000000100

= The polyline consists of two points.

&820000001400000002

= The positions of the two points are (114 points, 85 points) and (51 points, 85 points).
00720000005500000033000000550000

The rest of the styles are inherited from previous objects.

Specification of the arc
The arc in this example has the following specifications:

« The fill pattern of the arc is none (OF).
&22000000010F

= The style of the head cap of the arc is square.
&270000000103

= The position of the arc is (4 points, 43 points).
&850000001800040000002B0000

= The size of the arc is 43 points by 40 points.
002F0000002C0000

= The start angle of the arc is 90°, and the arc angle length is 90°.
005A0000005A0000

The rest of the styles are inherited from previous objects.

Specification of the end of the FrameVector graphic
The following record specifies the end of the FrameVector graphic:

&FF00000000
The\ x characters specify the end of data in hexadecimal format.

Index

Symbols

(number sign) 68

&%i 129

&%m 129

&%v 129

&\x 129

' (straight quotation mark) 11
< (left angle bracket) 10
=facet_name 129

> (right angle bracket) 10

\ (backslash), using for special
characters 13

* (left quotation mark) 11

A

abs 213

acmut 216

acos 213

acosh 213

acot 213

acoth 213

acsc 213

acsch 213

adding pages 117

AFrame 142

alignment
anchored frame 128
equation 204
paragraph in cell 86
paragraph in text column 73
table 84

Alsolnsert 169

AnchorAlign 126

AnchorBeside 126

anchored frames
alignment 128
position 127

Angle 120

in Math 203
angle

in MathFullForm 213
angle brackets (< >) 10
approx 217
ArcDTheta 124
ArcRect 124
ArcTheta 124
arg 213
ArrowStyle

in Arc 124

in PolyLine 136
asec 213
asech 213
Asian character encoding 226
AsianSpace 234
asin 213
asinh 213
ast 213
atan 213
atanh 213
ATbl 142

atomic expressions in
equations 207-212

atop 217

Attribute 187

AttributeDisplay 186

Attributes 186, 190

AttrName 187

AttrValue 187

autonumber of a paragraph
inatable 84

AutoNumSeries 116

B

backslash (\), using for special
characters 13

bar chart example 248
BaseAngle 125
BaseCharWithRuby 234
BaseCharWithSuper 234
baselines, synchronizing 140
BAttrEditor 194
BAttributeDisplay 193
BCustomElementList 193
BDisplayText 161
BegParentheses 234
BElementCatalogScope 193
BFCLMaximums 194
BFCLMinimums 194
BFNoteLabels string> 164

BFNoteNumComputeMethod 165

BFNoteNumStartNum 164
BFNoteNumStyle 164
BFNoteRestart 165

bigcap 219

bigcup 219

binary operators in equations 216

BitMapDpi 129, 130

bitmaps, imported 130

bket 216

BLOffset 126

body pages, adding 43, 117

Book 159

book files 158-166
chapter numbering in 163
identification line 159
page numbering in 163
paragraph numbering in 164

sections 158

328

volume numbering 162
BookComponent 195

in document files 115
BookElements 195
BookSettings 193
BookUpdateReferences 166
borders, displaying 103, 111
box 213
box2 213
boxdot 213
bra 213
BRect 281
BSeparatelnclusions 194
BSGMLAppName 194
BTbIFNoteLabels 165

BTbIFNoteNumComputeMethod 1
65

BTbIFNoteNumStyle 165
bullet 216
BUselnitStructure 194
BViewOnly 160
BViewOnlyNoOp 161
BViewOnlyWinBorders 160
BViewOnlyWinMenubar 161
BViewOnlyWinPopup 161

byte encoded data, in Framelmage
file 299

C

cap 217

Catalogs
Character 77-83
Color 94-95
Element 186-187
Paragraph 71-76
Table 83-93

CColor 71

cdot 217

ceil 213

Cell 90

in Row 90

CellAffectsColumnWidthA
in Cell 91
in determining table width 92
CellAngle 91
CellBRuling 91
CellColor 91
CellColumns 91
CellContent 91
CellLRuling 91
CellRows 91
CellRRuling 91
cells
contents 91
fill pattern, default 91
margins 84
rotation 91
ruling style 91
straddling columns/rows 91
CellSeparation 91, 280
CellTRuling 91
CenteredPunct 234
CGM files
imported 130
change 214
change bars, properties 103, 111
chapter numbering
in abook 163

ChapterNumComputeMethod 108,
163

ChapterNumStart 107, 163
ChapterNumStyle 108, 163
ChapterNumText 108, 163
Char 143

in ParaLine 142

in TextLine 138
char

in MathFullForm 208
Character Catalog 77-83

character format properties

language used for spell-checking
and hyphenation 78

character formats
creating and applying 29
inheriting format properties 30
character set 13
character spread 80, 183
characters in equations 208
CharClass 234
CharUnits 67
chem 222
choice 216
cmut 216
Collapsed 186
Color 95
in ColorCatalog 94
color
for body cells 85
for cells 91
for characters 79, 182

for exception columns and body
rows 85

for heading and footing cells 85
for objects 121
color map, in Framelmage file 298
color, custom 94
ColorAttribute 95
ColorBlack 95
ColorCatalog 94
ColorCyan 95
ColorLibraryFamilyName 95
ColorLibrarylnkName 95
ColorMagenta 95
ColorOverprint 95
ColorTag 95
ColorTint 95
ColorTintBaseColor 95
ColorYellow 95
ColumnGap 118
Columns 118
columns, in a table

body cell paragraph format 86

329

footing cell paragraph format 86
heading cell paragraph format 86
number 88
width 88
columns, text
default number per page 100, 107
Combined fonts 227

CombinedFontAllowBaseFamilyBold
edAndObliqued 228

CombinedFontBaseEncoding 228
CombinedFontBaseFamily 228
CombinedFontCatalog 228
CombinedFontDefn 228
CombinedFontName 228
CombinedFontWesternFamily 228
CombinedFontWesternShift 228
CombinedFontWesternSize 228
comma 217
Comment 68
Condition 70
condition tags

creating and applying 50-54

syntax 70
Conditional 71

in ParaLine 142

inRow 90
conditional rows in a table 90

conditional text,
showing/hiding 101, 109

ConditionCatalog 70

cong 217

Context 177

ContextFormatRule 175, 178

ContextLabel 179

ContPageNum 108, 163

Corel Draw files
imported 130

cos 214

cosh 214

cot 214

coth 214

CountElement 176

CountElements 176

Cropped 126

cross 216

cross-references 147
automatically active 57
creating 46

csc 214

csch 214

CSeparation 71, 280

CState 70

CStyle 71

CTag 70

cup 217

curl 214

current state of an object 9

D

DAcrobatBookmarksIncludeTagNa
mes 106, 113

dagger 214
dangle 214
DApplyFormatRules 190
dashed lines

custom 253
DashedPattern 121
DashedStyle 121
DashSegment 121
database publishing 61

example of 259
DataLink 156, 278
DataLinkEnd 156, 279
DAttrEditor 189
DAttributeDisplay 189
DAutoChBars 103, 111
DBookElementHierarchy 190
DBordersOn 103, 111
DChBarColor 103, 111
DChBarGap 103, 111
DChBarPosition 103, 111

DChBarSeparation 280
DChBarWidth 103, 111
DCollateSeparations 282
DColumnGap 100, 107
DColumns 100, 107
DCurrentView 104, 111
DCustomElementList 189
DDisplayOverrides 102, 109
DefaultApply 166
DefaultDerive 166
DefaultPrint 165
defaults

document properties 98-115

hyphenation and spell-checking
language 105, 112

MIF 9

page margins 100, 106

paragraph formats, in cells 86

punctuation for run-in heads 74

ruling, in atable 84

shading, in atable 85

units 66
define 68
DElementBordersOn 189
DElementCatalogScope 189
DElementTags 189
DeriveLinks 115, 162
DeriveTag 115, 162
DeriveType 115, 162
DExclusions 190
DFCLMaximums 190
DFCLMinimums 191
DFNoteAnchorPos 102, 110
DFNoteAnchorPrefix 102, 110
DFNoteAnchorSuffix 102, 110
DFNotelLabels 102, 110
DFNoteMaxH 102, 109
DFNoteNumberPos 102, 110
DFNoteNumberPrefix 102, 110
DFNoteNumberSuffix 102, 110

330

DFNoteNumComputeMethod 110

DFNoteNumStyle 102, 110
DFNoteRestart 102, 109
DFNoteTag 102, 109
DFrozenPages 101, 109
DFullRulers 103, 111
DGenerateAcrobatinfo 106, 113
DGraphicsOff 103, 111
DGridOn 103, 111
diacritical 211

Dictionary 116

diff 214

Dinclusions 190

div 216

diver 214

DLanguage 105, 112
DLinebreakChars 101, 109
DLinkBoundariesOn 104, 111
DLOut 156
DLParentFormats 278
DLSource 156, 278
DMagicMarker 106, 115
DMargins 100, 106
DMathCatalog 199
DMathFunctions 199
DMathGreek 199
DMathGreekOverrides 199
DMathltalicFunctionName 281
DMathltalicOtherText 281
DMathLargeHoriz 199
DMathLargelntegral 198
DMathLargeLevell 198
DMathLargeLevel2 198
DMathLargeLevel3 199
DMathLargeSigma 198
DMathLargeVert 199
DMathMediumHoriz 199
DMathMediumIntegral 198
DMathMediumLevell 198
DMathMediumLevel2 198

DMathMediumLevel3 198
DMathMediumSigma 198
DMathMediumVert 199
DMathNew 200
DMathNewType 200
DMathNumbers 199
DMathOpName 199, 200
DMathOpOverrides 199
DMathOpPositionA 200
DMathOpPositionB 200
DMathOpPositionC 200
DMathOpTLineOverride 200
DMathShowCustom 199
DMathSmallHoriz 199
DMathSmalllntegral 198
DMathSmallLevell 198
DMathSmallLevel2 198
DMathSmallLevel3 198
DMathSmallSigma 198
DMathSmallVert 199
DMathStrings 199
DMathVariables 199
DMaxInterLine 277
DMaxInterPgf 277
DMenuBar 106, 114
DNarrowRubiSpaceForJapanese 243
DNarrowRubiSpaceForOther 243
DNextUnique 100, 106
DNoPrintSepColor 105, 112
Document 100, 106, 189
document files 64

MIF sections of 64
document properties 98-115

Acrobat preferences 106, 113

change bars 103, 111

document-specific menu
bars 106, 114

footnotes 102, 109

graphics display, turning on and
off 103, 111

hyphenation and spell-checking
language, default 105, 112

line breaks 101, 109

margins 100, 106

number of text columns per
page 100, 107

page numbering 100, 108
page size 100, 107

references 105, 113

showing/hiding conditional
text 101, 109

small caps 105, 113

Smart Quotes 101, 109

Smart Spaces 101, 109

subscript/superscript 105, 112

two-sided layout 101, 109

view options 103, 111
document window

customizing 57

placement of 100, 106
downbrace 214
DPageGrid 103, 111
DPageNumStyle 101, 108
DPagePointStyle 101, 108
DPageRounding 101, 109
DPageScrolling 104, 111
DPageSize 100, 107
DParity 101, 109
DPDFAIINamedDestinations 113
DPDFBookmarks 113
DPDFDestsMarked 114
DPDFStructure 113
DPDFStructureDefined 113
DPrintProcessColor 105, 112
DPrintSeparations 105, 112
DPrintSkipBlankPages 105, 112
DPunctuationChars 101, 109
DRubiAlignAtBounds 243
DRubiFixedSize 243
DRubiOverhang 243
DRubiSize 242

331

DRulersOn 103, 111
DSeparatelnclusions 190
DSGMLAppName 190
DShowAllConditions 101, 109
DSmallCapsSize 105, 113
DSmallCapsStretch 105, 113
DSmartQuotesOn 101, 109
DSmartSpacesOn 101, 109
DSnapGrid 103, 111
DSnapRotation 103, 111
DStartPage 100, 108
DSubscriptShift 105, 113
DSubscriptSize 105, 113
DSubscriptStretch 105, 113
DSuperscriptShift 105, 113
DSuperscriptSize 105, 113
DSuperscriptStretch 105, 113
DSymbolsOn 103, 111
DTbIFNoteAnchorPos 103, 110
DTbIFNoteAnchorPrefix 103, 111
DTbIFNoteAnchorSuffix 103, 111
DTbIFNoteLabels 103, 110
DTbIFNoteNumberPos 103, 110
DTbIFNoteNumberPrefix 103, 111
DTbIFNoteNumberSuffix 103, 111
DTbIFNoteNumStyle 103, 110
DTbIFNoteTag 103, 110

DTrapwiseCompatibility 105, 112,
274

DTwoSides 101, 109
dummy 212
DUpdateDataLinksOnOpen 276

DUpdateTextInsetsOnOpen 105,
113

DUpdateXRefsOnOpen 105, 113
DUselnitStructure 190

DViewOnly 104, 112
DViewOnlyNoOp 104, 112
DViewOnlySelect 58, 104, 112, 276
DViewOnlyWinBorders 104, 112

DViewOnlyWinMenubar 104, 112
DViewOnlyWinPalette 104, 112
DViewOnlyWinPopup 104, 112
DViewOnlyXRef 104, 112
DViewRect 100, 106

DViewScale 100, 106
DVoMenuBar 106, 115
DWideRubiSpaceForJapanese 243
DWideRubiSpaceForOther 243

DWindowRect 100, 106
DXF files
imported 130

E

EComponent 195
EDAIsolnsert 169
EDAttrChoice 171
EDAttrChoices 171
EDAttrDef 169, 170
EDAttrDefinitions 169
EDAttrDefValue 171
EDAttrDefValues 171
EDAttrHidden 171
EDAttrName 170
EDAttrRange 171
EDAttrReadOnly 171
EDAttrRequired 171
EDAttrType 171
EDComments 169
EDEndElementRules 175
EDExclusions 168
EDGeneralRule 168
EDInclusions 168
EDlInitial TablePattern 169
EDObject 168
EDObjectFormatRules 173
EDPgfFormat 169
EDPrefixRules 173
EDStartElementRules 174
EDSuffixRules 169

EDTag 168, 189, 193
EDTextFormatRules 172
EDTSuffixRules 174
EDValidHighestLevel 168
Element 190, 195
element properties
general rule 168
highest level element 168
inclusions/exclusions 168
object type 168
tag 168
ElementBegin 186
ElementContext 190
ElementDef 168
ElementDefCatalog 167
ElementEnd 187
ElementPrefix 179
ElementReferenced 186
elements 186
marking in document 186, 188
ElementSuffix 179
Else 177
Elself 177
Endlnset 129
EndParentheses 234
EPS files
imported 130
EPSI format 294
equal 218
EqualizeWidths
in determining table width 92
in Thl 88
equations 198-225
alignment 204
atomic expressions in 207-212
binary operators in 216
charactersin 208
indices in 221
large operatorsin 219

matricesin 223

332

N-ary operators in 217
numbersin 207
operators in 212-223
optional operands in 220
rotation 203
samples of 205, 225
size 204
strings in 208
unary operators in 213
equiv 218
error messages 268-271
ETag 186, 190, 195
ETextSnippet 195
Exclusion 168
exists 214
exp 214

F
facets

defined 129
EPSI 294
Framelmage 296
FrameVector 304
fact 214
FAngle 78, 182
FBold 80
FCase 80, 183
FChangeBar 79, 182
FclPgfCatalogRef 180
FclTag 180
fcodes 58
FColor 79, 182
FCombinedFontName 229
FDoubleUnderline 281
FDW 80, 183, 191, 194
FDWChange 183
FDX 80, 183
FDY 80, 183
feathering 140
FEncoding 79, 230

FFamily 78, 182
FileName 115, 161
FileNameSuffix 115, 161
Fill 121

in Frame 120

in objects 120
fill pattern

default for body cells 85

default for heading/footing
rows 85

for cells 91

for exception columns in a
table 85

for objects 120
index 121
filters
import 59
output 60
record of 133, 150
Fltalic 80
FLanguage 78
FlipLR 129
Float 126
FLocked 80, 154, 183
floor 214
flows, text 139-146
HIDDEN 142
FlowTag 116

FmtChangeList 178, 179, 180

FmtChangeListCatalog 179
FmtChangeListTag 178
FNote

in Notes 141

in ParaLine 142
FNoteStartNum 102, 109
FNumericUnderline 281
Font 78

in FontCatalog 77

in Notes 141

in ParaLine 142, 147

in TextLine 138

FontCatalog 77
FooterC 118
FooterL 118
FooterR 118
footnotes
incells 91

in table titles 89

properties, in document text 102,

109

properties, in tables 103, 110

forall 214
format rules 172
formats

Framelmage 294
FormatTag 178
FOutline 79, 183
FOverline 79, 182
FPairKern 79, 183
FPlain 80
FPlatformName 78, 182
FPosition 79, 183
FPostScriptName 78, 182
fract 216
Frame

in AFrames 123

in Frame 126

in Page 118
Framelmage format 296

color 300

example 301, 302

gray 300

monochrome 299
frames

reference 75
FrameType 126
FrameVector

example 323

format 304
FSeparation 79, 182, 280
FShadow 79, 183
FSize 79, 182, 191

333

FSizeChange 182

FStretch 79, 182
FStretchChange 182
FStrike 79, 182

FSubScript 281

FSupScript 281

FTag 78

FTsume 80

function 216

FUnderline 281
FUnderlining 79, 182

FVar 78, 182

FWeight 78, 182
FWesternPlatformName 229
FWesternPostScriptName 229

G
GEM files

imported 130
generic object data 120
geq 218
gg 218
GIF files

imported 130
grad 220
graphic frames

type 126
graphics

bitmap 130

imported 128

object-oriented 130

raster 130

vector 130
graphics objects 119-139

graphics, turning display on or
off 103, 111

greaterthan 218

grid 103, 111
snap 103, 111
visible 103, 111

GrouplD 120

H
HeadCap
in Arc 124
in PolyLine 136
header, in Framelmage file 296
HeaderC 118
HeaderL 118
HeaderR 118
HeadType 125
height, row 90
HFFont 118
HFMargins 118
hidden page, for conditional text 117
Hiragana 234
HPGL files
imported 130

hypertext documents, setting View
Only options 56

hypertext links, automatically
generated 115, 162

hyphenation language
default for document 105, 112
in paragraphs 78
HyphenMaxLines 74, 184
HyphenMinPrefix 74, 184
HyphenMinSuffix 74, 184
HyphenMinWord 74, 184

in Frame 121

in Group 128

in Notes 141

in objects 120
id

in MathFullForm 214
If 177
IGES files

imported 130
imag 214
import filters 59
imported graphics 128

imported objects 128-135
graphic file formats 130
pathname syntax 132
record of filter used 133
size 130

imported text 148

ImportHint 129

importing MIF files 15

ImportObEditor 130

ImportObFile 129, 132

ImportObFileDI 129, 132

ImportObFixedSize 129

ImportObject 128-135

ImportObUpdater 130

in 218

include 69

Inclusion 168

InCondition 71
in Row 90

indents
paragraph 72
table 83

indexes 221

indexes for pen and fill patterns 121

indices in equations 221

inheritance
of character format properties 30
of paragraph format properties 27

InitialAutoNums 116

inprod 216

int 219

IsTextRange 178

J
jotdot 218

K

ket 214

Key 114, 160
Klanguage 233

334

Kumihan 233
Kumihan tables 231-242
KumihanCatalog 233

L
landscape pages 282

language used for spell-checking and
hyphenation

default for document 105, 112
in paragraphs and characters 78

lap 215

large operators in equations 219

leading, of a paragraph 73

left angle bracket (<) 10

left quotation mark (*) 11

Leftarrow 218

leftarrow 218

Length 125

leq 218

lessthan 218

letter spacing 80

Level 177

LevelFormatRule 176, 178

lim 217

line breaks 101, 109

list 218

I 218

In 215

locking a document 104, 112, 160

log 220

Iparen 215

LRarrow 218

Irarrow 218

M
MacEdition 156, 279
MacPaint files
imported 130
macros 68
margins
cell 84

page, defaults 100, 106
Marker 144

in ParaLine 142
markers 45, 144

MarkerTypeCatalog 145

markup statements, data item
conventions 11

master pages
creating 42
syntax 117
math, statements for 198-225
MathAlignment 204
MathFullForm 204-225
in Math 203
MathLineBreak 203
MathOrigin 203
MathSize 204
matrices in equations 223
matrix 223
MCurrPage 146
messages 268-271
Micrografx Drawing Format files
imported 130
MIF 64
defaults 9
definition of 6
samples of 225, 246-259
MIF book files 158-166
identification line 159
sections 158
MIF document files
sections 64
MIF files
debugging 62
editing 16

importing into a FrameMaker
document 15

layout 17
opening and saving 15
MIFFile 66

minus 215

MoveTabs 182

mp 215

MText 146

MType 146
MTypeName 145, 146

N
N-ary operators in equations 217
NativeOrigin 130
neg 215
newdelimiter 224
newfunction 224
newinfix 223
newlarge 224
newlimit 224
newpostfix 224
newprefix 224
newvlist 224
NextElement 190
ni 218
NoLineBeginChar 234
NonSeperableChar 234
norm 215
notequal 218
Notes
in Cell 91
inThl 89
in TextFlow 140
notin 218
notsubset 218
NSOffset 126
num 207
number sign (#) 68
numbering
chapters in a book 163
chapters in a document 107
footnotes in a document 109
pages ina book 163
pages in a document 108, 117
paragraphs in a book 164

335

paragraphs in a table 84
table footnotes in a document 110
volumes in a book 162
volumes in a document 107
numbers in equations 207
NumCounter 116
Numeral 234
NumPages 166
NumPoints
in Polygon 135
in PolyLine 136
NumSegments 121

o
Object
defined 119
objects 119-139
color for 121
dashed pattern 121
examples of 248-253
fill for 121
generic object data 120
imported 128-135
pen for 121
rotation 120
ObTint 120
oint 219
OKWord 116
OLE object 131
OneLinePerRec 156, 278
operators in equations 212-223
oplus 218
oppartial 221
optional operands in equations 220
optotal 221
Others 234
otimes 218
output filters 60
over 217

overline 215

Overprint 120

P
Page 117
page layouts 40-45
default 40
double-sided 44
first master page 44
headers and footers 45
single-sided 42
text column 41
page numbering
inabook 163
ina document 100, 108
page size 100, 107
PageAngle 117
PageBackground 118
PageNum 117
PageNumbering 164
PageNumStart 163
PageNumStyle 164
PageOrientation 282
pages
adding 117
background for 118
body 117
breaking 74
hidden 117
master 117
name 117
numbering in adocument 117
orientation 282
reference 117
rotation 117
table placement on 84
types of 117
PageSize 117
PageTag 117

PageType 117
Para

336

in Cell 91
in Notes 141
in Thl 89
in TextFlow 140
Paragraph Catalog 71-76
creating 25
paragraph format properties
alignment 73
alignment in cells 76
default font 73
keep with next paragraph 74

language used for spell-checking
and hyphenation 78

leading 73

letter spacing 74

numbering 74

space above/below 73

widow/orphan line control 74
paragraph formats

adding to Paragraph Catalog 25

creating 19

defaults in cells 86

inheriting properties 27
paragraphs

creating 19

syntax 141
ParalLine

in Para 142
parallel 218
ParenBeginWariChu 235
ParenEndWariChu 235
partial 215
PCX files

imported 130
PDFBookInfo 160
PDFDocInfo 114
Pen 121

in Frame 120

in objects 120
pen pattern

for objects 120

for ruling style 93

index 121
PenWidth 120
PeriodComma 234
perp 218
Pgf 72

inPara 141

in PgfCatalog 72

in TblIFormat 84, 86
PgfAcrobatLevel 76
PgfAlignment 73, 181
PgfAutoNum 74, 184
PgfBlockSize 74, 184
PgfBotSeparator 75, 185
PgfBotSepAtindent 75, 185
PgfBotSepOffset 75, 185
PgfCatalog 71-76
PgfCellAlignment 76, 185
PgfCellBMargin 185, 191
PgfCellBMarginChange 186
PgfCellBMarginFixed 76, 186
PgfCellLMargin 185, 191
PgfCellLMarginChange 185
PgfCellLMarginFixed 76, 186
PgfCellMargins 76
PgfCellRMargin 186, 191
PgfCellRMarginChange 186
PgfCellRMarginFixed 76, 186
PgfCellTMargin 186, 191
PgfCellTMarginChange 186
PgfCellTMarginFixed 76, 186
PgfCondFullPgf 142
PgfEndCond 142
PgfFIndent 72, 180, 191
PgfFIindentChange 180
PgfFIndentOffset 72
PgfFindentRelative 72
PgfFont 78
PgfHyphenate 74, 184
PgfLanguage 75, 185

PgfLeading 73, 181, 191
PgfLeadingChange 181
PgfLetterSpace 74, 184
PgfLIndent 72, 180, 191
PgfLIndentRelative 180
PgfLineSpacing 73
PgfLineSpacingFixed 181
PgfLocked 76, 154
PgfMaxWordSpace 75, 184
PgfMinWordSpace 75, 184
PgfNextTag 72
PgfNumAtEnd 74, 184
PgfNumberFont 74, 184
PgfNumbering 164
PgfNumFormat 74, 184
PgfNumString 141
PgfNumTabs 73, 181
PgfOptWordSpace 75, 184
PgfPlacement 74, 183
PgfPlacementStyle 74, 184
PgfRIndent 72, 181, 191
PgfRIndentChange 181
PgfRuninDefaultPunct 74, 184
PgfSpAfter 73, 181, 191
PgfSpAfterChange 181
PgfSpBefore 73, 181, 191
PgfSpBeforeChange 181
PgfTag

in Para 141

in Pgf 72

in TbIFormat 84, 86
PgfTopSeparator 75, 185
PgfTopSepAtindent 75, 185
PgfTopSepOffset 75, 185
PgfUseNextTag 72
PgfWithNext 74, 184
PgfWithPrev 74, 184
PICT files

imported 130
pie chart example 252

plus 218

pm 215
Point

in Polygon 135
in PolyLine 136

Polygon 135

portrait pages 282

power 217

PrecedingSymbol 234

preferences, document 98-115

PrefixEnd 188
PrevElement 190
prod 219
prompt 207

prompt in equations 207

propto 219

publish and subscribe 149, 156, 278

Q

QuestionBang 234

quotation marks
Smart Quotes 101, 109

around strings 11

R

Radius 137
RangeEnd 171
RangeStart 171
real 215

reference frames 75
reference pages, adding 117
ReRotateAngle 120

right angle bracket (>) 10

Rightarrow 219
rightarrow 219
RomanChar 235
RomanSpace 235
rotation

of cells 91

of pages 117
Row 89

337

in Thl 89
row properties

conditional text 90

height 90

placement 90
RowHeight 90
RowMaxHeight 90
RowMinHeight 90
RowPlacement 90
RowWithNext 90
RowWithPrev 90
rparen 215
Rubi text 242
RubiCompositeBegin 244
RubiCompositeEnd 244
RubiTextBegin 244
RubiTextEnd 244
rulers, displaying 103, 111
Ruling

in RulingCatalog 93
ruling style

cell 91

properties 93

in table formats 84
RulingCatalog 93
RulingColor 93
RulingGap 93
RulingLines 93
RulingPen 93
RulingPenWidth 93
RulingSeparation 93, 280
RulingTag 93
RunaroundGap 120
RunaroundType 120

S

sample files 15
ScaleFactor 125
ScaleHead 125
sec 215

sech 215
semicolon 215
Separation 120, 280
in Frame 120
in objects 120
Series 116
sgn 215
ShapeRect
in Ellipse 125
in Frame 125
in ImportObject 129, 130
in Math 203
in Rectangle 137
in RoundRect 137
in TextRect 138
side heads
changes in specification 278
specification in text frame 139
sim 219
sin 215
sinh 215
Smart Quotes 101, 109
Smart Spaces 101, 109
Smoothed
in Polygon 135
in PolyLine 136
in Rectangle 137
sn 217
spanning columns/rows 91
Sparel -5 235
SpclHyphenation 142
special characters 13
predefined 144
SpecialCase 186
spell-checking language
default for document 105, 112
in paragraphs and characters 78
sqrt 221
SqueezeHorizontal 236
SqueezeTable 236

SqueezeVertical 236
StartPageSide 162
statements
for book files 158-166
for document files 64-146
for equations 198-225
StopCountingAt 176
straddling columns/rows 91
straight quotation mark (") 11
String
in ParaLine 142, 147
in TextLine 138
string
in MathFullForm 208
strings 11
in equations 208
quotation marks around 11
syntax 11
structured documents 279
subscribe
graphics 132
subset 219
subseteq 219
substitution 221
SuccedingSymbol 234
SuffixBegin 188
sum 219
Sun rasterfile
imported 130
supset 219
supseteq 219
syntax

for strings 11

T
Table Catalog 37, 83-93
table format properties 83-93

alignment 84

autonumber of paragraphs in

cells 84

body cell paragraph formats 86

338

cell margins 84
color 85
column widths 86
fill pattern 85
footing cell paragraph formats 86
footnotes 102, 109
heading cell paragraph formats 86
indents 83
numbering paragraphs in cells 84
placement on page 84
ruling, default 84
shading, default 85
shading, exception column 85
space above/below 83
title paragraph format 84
title placement 84
widow/orphan control 84
tables 83-93
anchors 33
column widths 88
creating and formatting 30-39
example of 255
IDs 34
instances 31
number of columns 88
rotated cells 34
straddled cells 35
titles 88
TabStop 73, 181
Tag 126
TailCap
in Arc 124
in PolyLine 136
tan 215
tanh 216
Thl
in Thls 88
TblAlignment 84
TblAltShadePeriod 85
ThiBlockSize 84

TbiBody 89
ThIBodyFill 85
ThiBodyRowRuling 84
ThIBodySeparation 85, 280
TbIBRuling 85
ThiCatalog 83
TbiCellMargins 84
TblColumn 86
TbiColumnBody 86
TblColumnF 86
TblColumnH 86
TblColumnNum

in determining table width 92

in Thl 88

in TblIFormat 86
TbiColumnRuling 84
TblColumnWidth

in determining table width 92

in Thl 88

in TbIFormat 86
TblColumnWidthA

in determining table width 92
TblColumnWidthP

in determining table width 92

in TblIFormat 86
TbIF 89
TblFormat

inThl 88

in ThiCatalog 83
ThiH 89
TbIHFFill 85
TbIHFRowRuling 85
TbIHFSeparation 85, 280
ThlID 88
ThblInitNumBodyRows 87
TblInitNumColumns 86
TblInitNumFRows 87
TblInitNumHRows 87
ThlLastBRuling 85
TblLIndent 83

TblLocked 87, 154
TbILRuling 85
TbINumByColumn 84
TbINumColumns 88
TblIPlacement 84
TbIRIndent 83
TbIRRuling 85
TbIRulingPeriod 85
Thls 88
TblSeparatorRuling 85
ThiShadeByColumn 85
TblIShadePeriod 85
ThbISpAfter 84
TblSpBefore 83
ThlTag

in Thl 88

in TblIFormat 83
ThITitle 88
ThiTitleContent 88
ThbITitleGap 84
ThiTitlePgfL 84
ThlTitlePlacement 84
TbITRuling 85
Thlwidth 86
TbIXColumnNum 84
TbIXColumnRuling 84
ThIXFill 85
TbIXRowRuling 85
TbIXSeparation 85, 280
templates, including in MIF 54
tensor 222
text columns

default number per page 100, 107

number in a text frame 42
text example 246
text flows 139-146

defined 40

imported by reference 149, 153
text frames
defined 40

339

placement of side heads 139

specifying number of columns 42

text imported by reference 148
text insets 148-152

defined 148

record of filter used 150
TextFlow 139-146, 187
Textlnset 148
TextlnsetEnd 149
TextRect

in Page 118
TextRectID 142
TFAutoConnect 140
TFFeather 140
TFLineSpacing 140
TFMaxInterLine 140
TFMaxInterPgf 140
TFMinHangHeight 140
TFPostScript 140
TFSideheadGap 277
TFSideheadPlacement 277
TFSideheads 140
TFSideheadWidth 277
TFSynchronized 140
TFTag 140
therefore 216
TiAPIClient 152
TiAutoUpdate 148
TiClientData 152
TiClientName 152
TiClientSource 152
TiClientType 152
TIiEOLISEOP 154
TIFF files

imported 130
TiFlow 153
TiFlowName 153
TiFormatRemoveOverrides 153
TiFormatRemovePageBreaks 153

TiFormatting 153

TilmportHint 149
TiLastUpdate 147, 149
TiMacEditionld 149
TiMainFlow 153
times 219

TiName 148
TiPageSpace 153
TipAngle 125
TiSrcFile 148
TiTblHeadersEmpty 155
TiTbllsByRow 154
TiTbINumCols 155
TiTbINumHdrRows 155
TiTbINumSep 155
TiTblSep 155
TiTblTag 154

TiText 154
TiTextTable 154
TiTxtEncoding 154
TiTxtThlEncoding 155
TLAlignment 137
TLOrigin 137

top-level statements, about 10

TrapWise application 105, 112, 274

TRColumnBalance 138
TRColumnGap 138
TRNext 138
TRNumColumns 138
TRSideheadGap 138
TRSideheadPlacement 139
TRSideheadWidth 138
TSDecimalChar 73, 181
TSLeaderStr 73, 181
TSType 73, 181

TSX 73,181, 191
TSXRelative 181

two-sided layoutfor documents 101,

109

u
ucomma 216
uequal 216
unary operators in equations 213
Unconditional 71, 142
Unique 120

in ElementBegin 186
Units 67
units, default 66
units, font size 67
UnitSymbol 234
upbrace 216
UserString 187

\
Value 114, 160
var 216
Variable 143
VariableDef 97
VariableFormat 97
VariableFormats 97
VariableLocked 143, 154
VariableName 97, 143
variables
creating 48
vector graphics
imported 130
vee 219
Verbose 67
View 96

View Only documents, setting
options 56

view options settings 103, 111
ViewCutout 96
ViewlInvisible 96
ViewNumber 96

Views 96
volume numbering
inabook 162

VolumeNumComputeMethod 107,

163

340

341

VolumeNumStart 107, 162
VolumeNumStyle 107, 162
VolumeNumText 107, 162

W
wedge 219
widow/orphan
lines in a paragraph 74
linesin a table 84
window placement
document window 100, 106
WMF files
imported 130
WPG files
imported 130

X
XRef 143, 147
XRefDef

in BookXRef 166

in XRefFormats 98
XRefEnd 147
XRefFormat 98
XRefFormats 98
XRefLocked 147, 154
XRefName 98, 147
XRefSrcFile

in BookXRef 166

in ParaLine 147
XRefSrclsElem 147, 166
XRefSrcText

in BookXRef 166

in ParaLine 147
xwd files

imported 130

	Introduction
	Why use MIF?
	Using this manual
	Style conventions
	Overview of MIF statements
	How MIF statements represent documents
	FrameMaker documents have default objects
	Current state and inheritance
	How a FrameMaker product identifies MIF files

	MIF statement syntax
	Statement hierarchy
	MIF data items
	Unit values
	Character set in strings
	Device-independent pathnames

	Using MIF Statements
	Working with MIF files
	Opening and saving MIF files
	Importing MIF files
	Editing MIF files
	MIF file layout

	Creating a simple MIF file for FrameMaker
	Creating and applying paragraph formats
	Creating a paragraph
	Creating a paragraph format
	Adding a Paragraph Catalog
	Applying a paragraph format
	How paragraphs inherit properties
	Tips

	Creating and applying character formats
	Creating and formatting tables
	Creating a table instance
	Adding a table anchor
	Creating a table format
	Adding a Table Catalog
	Applying a table format
	Creating default paragraph formats for new tables
	Tables inherit properties differently
	Tips

	Specifying page layout
	Using the default layout
	Creating a simple page layout
	Creating a single-sided custom layout
	Creating a double-sided custom layout
	Creating a first master page
	Adding headers and footers

	Creating markers
	Creating cross-references
	Creating cross-reference formats
	Inserting the reference source marker
	Inserting the reference point
	How a FrameMaker product writes cross-references

	Creating variables
	Defining user variables
	Using system variables
	Inserting variables

	Creating conditional text
	Creating and applying condition tags
	Showing and hiding conditional text
	How a FrameMaker product writes a conditional document

	Including template files
	Creating the template
	Editing the MIF file

	Setting View Only document options
	Changing the document window
	Using active cross-references
	Disabling commands

	Applications of MIF
	Sharing files with earlier versions
	Modifying documents
	Writing filters
	Database publishing

	Debugging MIF files
	Other application tools
	Where to go from here

	MIF Document Statements
	MIF file layout
	MIFFile statement
	Control statements
	Units statement
	CharUnits statement
	Verbose statement
	Comment statement

	Macro statements
	define statement
	include statement

	Conditional text
	ConditionCatalog statement
	Condition statement
	Conditional and Unconditional statements

	Paragraph formats
	PgfCatalog statement
	Pgf statement

	Character formats
	FontCatalog statement
	PgfFont and Font statements

	Tables
	TblCatalog statement
	TblFormat statement
	Tbls statement
	Tbl statement
	Row statement
	Cell statement
	RulingCatalog statement
	Ruling statement

	Color
	ColorCatalog statement
	Color statement
	Views statement
	View statement

	Variables
	VariableFormats and VariableFormat statements

	Cross-references
	XRefFormats and XRefFormat statements

	Global document properties
	Document statement
	BookComponent statement
	InitialAutoNums statement
	Dictionary statement

	Pages
	Page statement

	Graphic objects and graphic frames
	Object positioning
	Generic object statements
	AFrames statement
	Arc statement
	ArrowStyle statement
	Ellipse statement
	Frame statement
	Group statement
	ImportObject statement
	Math statement
	Polygon statement
	PolyLine statement
	Rectangle statement
	RoundRect statement
	TextLine statement
	TextRect statement

	Text flows
	TextFlow statement
	Notes statement
	Para statement
	ParaLine statement
	Char statement
	MarkerTypeCatalog statement
	Marker statement
	XRef statement

	Text insets (text imported by reference)
	TextInset statement
	TiApiClient statement
	TiFlow statement
	TiText statement
	TiTextTable statement

	Publishers
	DataLink Statement

	MIF Book File Statements
	MIF book file overview
	MIF book file identification line
	Book statements
	BWindowRect statement
	PDF statements
	View only book statements
	BDisplayText statement
	BookComponent statement
	BookXRef statement
	BookUpdateReferences statement

	MIF Statements for Structured Documents and Books
	Structural element definitions
	ElementDefCatalog statement
	ElementDef statement

	Attribute definitions
	EDAttrDef statement

	Format rules
	EDTextFormatRules statement
	EDObjectFormatRules statement
	EDPrefixRules statement
	EDSuffixRules statement
	EDStartElementRules statement
	EDEndElementRules statement
	ContextFormatRule statement
	LevelFormatRule statement
	If, ElseIf, and Else statements

	Format change lists
	FmtChangeListCatalog statement
	FmtChangeList statement

	Elements
	ElementBegin and ElementEnd statements
	PrefixEnd and SuffixBegin statements

	Preference settings for structured documents
	Document statement

	Text in structured documents
	TextLine statement
	ParaLine statement

	Structured book statements
	ElementDefCatalog statement
	BookSettings statement
	BookElements statement

	MIF Messages

	MIF Equation Statements
	Document statement
	DMathCatalog statement

	Math statement
	MathFullForm statement
	A sample MathFullForm statement
	MathFullForm statement syntax
	Atomic expressions
	Operator expressions
	Sample equations

	MIF Asian Text Processing Statements
	Asian Character Encoding
	MIFEncoding statement for Japanese
	MIFEncoding statement for Chinese
	MIFEncoding statement for Korean

	Combined Fonts
	CombinedFontCatalog statement
	PgfFont or Font statement

	Kumihan Tables
	Understanding Kumihan tables
	Writing Kumihan tables as MIF
	Specifying Kumihan tables in MIF
	KumihanCatalog statement
	Kumihan statement
	CharClass statement
	SqueezeTable statement
	SpreadTable statement
	LineBreakTable statement
	ExtraSpaceTable statement

	Rubi text
	Document statement

	Examples
	Text example
	Bar chart example
	Pie chart example
	Custom dashed lines
	Table examples
	Creating an entire table
	Updating several values in a table

	Database publishing
	Creating several tables
	Creating anchored frames

	MIF Messages
	General form for MIF messages
	List of MIF messages

	MIF Compatibility
	Changes between version 5.5 and 6.0
	Saving documents and books as PDF
	Books
	Book Components
	Documents

	Changes between version 5 and 5.5
	Asian text processing
	MIF file layout
	Control statements
	Document statements
	Color statements
	Paragraph and Character statements
	Text inset statements
	Marker statements
	Graphic object statements
	Structured element definition statements

	Changes between versions 4 and 5
	Changes to existing MIF statements

	Changes between versions 3 and 4
	4.00 top-level MIF statements
	Changes to 3.00 MIF statements

	Facet Formats for Graphics
	Facets for imported graphics
	Basic facet format
	Facet name
	Data type
	Facet data

	Graphic insets (UNIX versions)
	External graphic insets
	Internal graphic insets
	Application-specific facets
	Example of graphic inset file

	General rules for reading and writing facets

	EPSI Facet Format
	Specification of an EPSI facet
	Example of an EPSI facet

	FrameImage Facet Format
	Specification of a FrameImage facet
	Specification of FrameImage data
	Header
	Color map
	Data describing the graphic

	Differences between monochrome and color
	Sample unencoded FrameImage facet
	Sample encoded FrameImage facet

	FrameVector Facet Format
	Specification of a FrameVector facet
	Specification of FrameVector data
	Types and listing of op codes
	Data types used in specifications
	Specifications of definition op codes
	Specifications of style op codes
	Specifications of object op codes

	Sample FrameVector facet
	Definition op codes for the FrameVector graphic
	Specification of the rectangle shadow
	Specification of the polygon
	Specification of the rectangle
	Specification of the text line
	Specification of the polyline
	Specification of the arc
	Specification of the end of the FrameVector graphic

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

